4,888 research outputs found

    Compression of Martian atmosphere for production of oxygen

    Get PDF
    The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work

    Uric acid enhances longevity and endurance and protects the brain against ischemia

    Get PDF
    Among mammals, there is a positive correlation between serum uric acid (UA) levels and life span. Humans have high levels of UA because they lack a functional urate oxidase (UOX) enzyme that is present in shorter lived mammals. Here, we show that male and female mice with UOX haploinsufficiency exhibit an age-related elevation of UA levels, and that the life span of female but not male UOX+/− mice is significantly increased compared to wild-type mice. Serum UA levels are elevated in response to treadmill exercise in UOX+/− mice, but not wild-type mice, and the endurance of the UOX+/− mice is significantly greater than wild-type mice. UOX+/− mice exhibit elevated levels of brain-derived neurotrophic factor, reduced brain damage and improved functional outcome in a model of focal ischemic stroke. Levels of oxidative protein nitration and lipid peroxidation are reduced in muscle and brain tissues of UOX+/− mice under conditions of metabolic and oxidative stress (running in the case of muscle and ischemia in the case of the brain), consistent with prior evidence that UA can scavenge peroxynitrite and hydroxyl radical. Our findings reveal roles for UA in life span determination, endurance and adaptive responses to brain injury, and suggest novel approaches for protecting cells against injury and for optimizing physical performance.España, Ministerio de Educación, Cultura y Deporte EX2009–091

    Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order

    Get PDF
    We derive the gravitational field and equations of motion of compact binary systems up to the 5/2 post-Newtonian approximation of general relativity (where radiation-reaction effects first appear). The approximate post-Newtonian gravitational field might be used in the problem of initial conditions for the numerical evolution of binary black-hole space-times. On the other hand we recover the Damour-Deruelle 2.5PN equations of motion of compact binary systems. Our method is based on an expression of the post-Newtonian metric valid for general (continuous) fluids. We substitute into the fluid metric the standard stress-energy tensor appropriate for a system of two point-like particles. We remove systematically the infinite self-field of each particle by means of the Hadamard partie finie regularization.Comment: 41 pages to appear in Physical Review

    Time-frequency detection of Gravitational Waves

    Get PDF
    We present a time-frequency method to detect gravitational wave signals in interferometric data. This robust method can detect signals from poorly modeled and unmodeled sources. We evaluate the method on simulated data containing noise and signal components. The noise component approximates initial LIGO interferometer noise. The signal components have the time and frequency characteristics postulated by Flanagan and Hughes for binary black hole coalescence. The signals correspond to binaries with total masses between 45M⊙45 M_\odot to 70M⊙70 M_\odot and with (optimal filter) signal-to-noise ratios of 7 to 12. The method is implementable in real time, and achieves a coincident false alarm rate for two detectors ≈\approx 1 per 475 years. At this false alarm rate, the single detector false dismissal rate for our signal model is as low as 5.3% at an SNR of 10. We expect to obtain similar or better detection rates with this method for any signal of similar power that satisfies certain adiabaticity criteria. Because optimal filtering requires knowledge of the signal waveform to high precision, we argue that this method is likely to detect signals that are undetectable by optimal filtering, which is at present the best developed detection method for transient sources of gravitational waves.Comment: 24 pages, 5 figures, uses REVTE

    Detection of high energy X-rays from the galactic center region

    Get PDF
    Observations of the galactic center region made with the high energy X-ray detector on OSO-8 are discussed. A strong hard X-ray which was detected during these observations from the vicinity of the galactic center are examined. The counting rate spectrum and the photon number spectrum of the flux are determined. Comparisons with the high energy X-ray fluxes observed from sources in the region by others are discussed

    Colliding Black Holes: The Close Limit

    Get PDF
    The problem of the mutual attraction and joining of two black holes is of importance as both a source of gravitational waves and as a testbed of numerical relativity. If the holes start out close enough that they are initially surrounded by a common horizon, the problem can be viewed as a perturbation of a single black hole. We take initial data due to Misner for close black holes, apply perturbation theory and evolve the data with the Zerilli equation. The computed gravitational radiation agrees with and extends the results of full numerical computations.Comment: 4 pages, Revtex, 3 postscript figures included, CGPG-94/2-

    The Quark-Gluon-Plasma Liquid

    Full text link
    The quark-gluon plasma close to the critical temperature is a strongly interacting system. Using strongly coupled, classical, non-relativistic plasmas as an analogy, we argue that the quark-gluon plasma is in the liquid phase. This allows to understand experimental observations in ultrarelativistic heavy-ion collisions and to interpret lattice QCD results. It also supports the indications of the presence of a strongly coupled QGP in ultrarelativistic heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.

    Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers

    Get PDF
    Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including μ\mu, the mass of the orbiting star, MM, the mass of the central black hole, and JJ, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.Comment: ReVTeX, 16 pages, 5 postscript figure
    • …
    corecore