11,635 research outputs found

    Three-dimensional cell to tissue assembly process

    Get PDF
    The present invention relates a 3-dimensional cell to tissue and maintenance process, more particularly to methods of culturing cells in a culture environment, either in space or in a gravity field, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region

    Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Benard Convection

    Get PDF
    The origin of the power-law decay measured in the power spectra of low Prandtl number Rayleigh-Benard convection near the onset of chaos is addressed using long time numerical simulations of the three-dimensional Boussinesq equations in cylindrical domains. The power-law is found to arise from quasi-discontinuous changes in the slope of the time series of the heat transport associated with the nucleation of dislocation pairs and roll pinch-off events. For larger frequencies, the power spectra decay exponentially as expected for time continuous deterministic dynamics.Comment: (10 pages, 6 figures

    Designing novel applications for emerging multimedia technology

    Get PDF
    Current R&D in media technologies such as Multimedia, Semantic Web and Sensor Web technologies are advancing in a fierce rate and will sure to become part of our important regular items in a 'conventional' technology inventory in near future. While the R&D nature of these technologies means their accuracy, reliability and robustness are not sufficient enough to be used in real world yet, we want to envision now the near-future where these technologies will have matured and used in real applications in order to explore and start shaping many possible new ways these novel technologies could be utilised. In this talk, some of this effort in designing novel applications that incorporate various media technologies as their backend will be presented. Examples include novel scenarios of LifeLogging application that incorporate automatic structuring of millions of photos passively captured from a SenseCam (wearable digital camera that automatically takes photos triggered by environmental sensors) and an interactive TV application incorporating a number of multimedia tools yet extremely simple and easy to use with a remote control in a lean-back position. The talk will conclude with remarks on how the design of novel applications that have no precedence or existing user base should require somewhat different approach from those suggested and practiced in conventional usability engineering methodology

    Grain boundary motion in layered phases

    Full text link
    We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-B\'enard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ϵ1/2\epsilon^{-1/2}, where ϵ\epsilon is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time dependent traveling velocity of the boundary, and especially their dependence on wavenumber. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain boundary motion through curved rolls is the dominant coarsening mechanism.Comment: 16 pages, 5 figure

    Rayleigh-Benard Convection in Large-Aspect-Ratio Domains

    Full text link
    The coarsening and wavenumber selection of striped states growing from random initial conditions are studied in a non-relaxational, spatially extended, and far-from-equilibrium system by performing large-scale numerical simulations of Rayleigh-B\'{e}nard convection in a large-aspect-ratio cylindrical domain with experimentally realistic boundaries. We find evidence that various measures of the coarsening dynamics scale in time with different power-law exponents, indicating that multiple length scales are required in describing the time dependent pattern evolution. The translational correlation length scales with time as t0.12t^{0.12}, the orientational correlation length scales as t0.54t^{0.54}, and the density of defects scale as t0.45t^{-0.45}. The final pattern evolves toward the wavenumber where isolated dislocations become motionless, suggesting a possible wavenumber selection mechanism for large-aspect-ratio convection.Comment: 5 pages, 6 figure

    Enhanced tracer transport by the spiral defect chaos state of a convecting fluid

    Get PDF
    To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular diffusivities of the tracer), we find that the enhancement is proportional to the Peclet number. For small Peclet numbers, the enhancement is proportional to the square root of the Peclet number. We explain the presence of these two regimes in terms of how the local transport depends on the local wave numbers of the convection rolls. For large Peclet numbers, we further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the local wave vector but suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure

    Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy

    Get PDF
    Magnetostatic modes of yttrium iron garnet (YIG) films are investigated by ferromagnetic resonance force microscopy. A thin-film "probe" magnet at the tip of a compliant cantilever introduces a local inhomogeneity in the internal field of the YIG sample. This influences the shape of the sample's magnetostatic modes, thereby measurably perturbing the strength of the force coupled to the cantilever. We present a theoretical model that explains these observations; it shows that the tip-induced variation of the internal field creates either a local "potential barrier" or "potential well" for the magnetostatic waves. The data and model together indicate that local magnetic imaging of ferromagnets is possible, even in the presence of long-range spin coupling, through the introduction of localized magnetostatic modes predicted to arise from sufficiently strong tip fields

    Dynamical Properties of Multi-Armed Global Spirals in Rayleigh-Benard Convection

    Full text link
    Explicit formulas for the rotation frequency and the long-wavenumber diffusion coefficients of global spirals with mm arms in Rayleigh-Benard convection are obtained. Global spirals and parallel rolls share exactly the same Eckhaus, zigzag and skewed-varicose instability boundaries. Global spirals seem not to have a characteristic frequency ωm\omega_m or a typical size RmR_m, but their product ωmRm\omega_m R_m is a constant under given experimental conditions. The ratio Ri/RjR_i/R_j of the radii of any two dislocations (RiR_i, RjR_j) inside a multi-armed spiral is also predicted to be constant. Some of these results have been tested by our numerical work.Comment: To appear in Phys. Rev. E as Rapid Communication

    Stability of Quasicrystals Composed of Soft Isotropic Particles

    Full text link
    Quasicrystals whose building blocks are of mesoscopic rather than atomic scale have recently been discovered in several soft-matter systems. Contrary to metallurgic quasicrystals whose source of stability remains a question of great debate to this day, we argue that the stability of certain soft-matter quasicrystals can be directly explained by examining a coarse-grained free energy for a system of soft isotropic particles. We show, both theoretically and numerically, that the stability can be attributed to the existence of two natural length scales in the pair potential, combined with effective three-body interactions arising from entropy. Our newly gained understanding of the stability of soft quasicrystals allows us to point at their region of stability in the phase diagram, and thereby may help control the self-assembly of quasicrystals and a variety of other desired structures in future experimental realizations.Comment: Revised abstract, more detailed explanations, and better images of the numerical minimization of the free energ
    corecore