research

Stability of Quasicrystals Composed of Soft Isotropic Particles

Abstract

Quasicrystals whose building blocks are of mesoscopic rather than atomic scale have recently been discovered in several soft-matter systems. Contrary to metallurgic quasicrystals whose source of stability remains a question of great debate to this day, we argue that the stability of certain soft-matter quasicrystals can be directly explained by examining a coarse-grained free energy for a system of soft isotropic particles. We show, both theoretically and numerically, that the stability can be attributed to the existence of two natural length scales in the pair potential, combined with effective three-body interactions arising from entropy. Our newly gained understanding of the stability of soft quasicrystals allows us to point at their region of stability in the phase diagram, and thereby may help control the self-assembly of quasicrystals and a variety of other desired structures in future experimental realizations.Comment: Revised abstract, more detailed explanations, and better images of the numerical minimization of the free energ

    Similar works

    Full text

    thumbnail-image

    Available Versions