626 research outputs found
Getting water from the water of hydration on Mars
Both Viking landers found evidence of water in small concentration in the soils of Mars. Using the gas chromatograph mass spectrometer the soil samples on Mars were heated to 500 C to release the water. This result lead researchers to believe that the water in the soil of Mars was tightly bound in a hydration state. In the laboratory several Mars analog soils and a few bench mark soils were run through a microwave to determine the amount of water released using this method. The results suggest that sufficient water can be obtained using this method to augment the activities of a human base on Mars
Bifurcations and Chaos in Time Delayed Piecewise Linear Dynamical Systems
We reinvestigate the dynamical behavior of a first order scalar nonlinear
delay differential equation with piecewise linearity and identify several
interesting features in the nature of bifurcations and chaos associated with it
as a function of the delay time and external forcing parameters. In particular,
we point out that the fixed point solution exhibits a stability island in the
two parameter space of time delay and strength of nonlinearity. Significant
role played by transients in attaining steady state solutions is pointed out.
Various routes to chaos and existence of hyperchaos even for low values of time
delay which is evidenced by multiple positive Lyapunov exponents are brought
out. The study is extended to the case of two coupled systems, one with delay
and the other one without delay.Comment: 34 Pages, 14 Figure
Guidance on Design and Construction of the Built Environment Against Wildland Urban Interface Fire Hazard: A Review
Wildland-Urban Interface (WUI) fires, a worldwide problem, are gaining more importance over time due to climate change and increased urbanization in WUI areas. Some jurisdictions have provided standards, codes and guidelines, which may greatly help planning, prevention and protection against wildfires. This work presents a wide systematic review of standards, codes and guidelines for the design and construction of the built environment against WUI fire hazard from North American, European, Oceanic countries, alongside with trans-national codes. The main information reviewed includes: the definition of WUI hazards, risk areas and related severity classes, the influence of land and environmental factors, the requirements for building materials, constructions, utilities, fire protection measures and road access. Some common threads among the documents reviewed have been highlighted. They include similar attempts at: (a) defining WUI risk areas and severity classes, (b) considering land factors including the defensible space (also known as ignition zones), (c) prescribing requirements for buildings and access. The main gaps highlighted in the existing standards/guidelines include lacks of detailed and widespread requirements for resources, fire protection measures, and lacks of taking into account environmental factors in detail. The main design and construction principles contained in the reviewed documents are largely based on previous research and/or good practices. Hence, the main contributions of this paper consist in: (a) systematically disseminate these guidance concepts, (b) setting a potential basis for the development of standards/guidelines in other jurisdictions lacking dedicated WUI fire design guidance, (c) highlighting gaps in existing standards/guidelines to be addressed by current and future research
An open multi-physics framework for modelling wildland-urban interface fire evacuations
Fire evacuations at wildland-urban interfaces (WUI) pose a serious challenge to the emergency services, and are a global issue affecting thousands of communities around the world. This paper presents a multi-physics framework for the simulation of evacuation in WUI wildfire incidents, including three main modelling layers: wildfire, pedestrians, and traffic. Currently, these layers have been mostly modelled in isolation and there is no comprehensive model which accounts for their integration. The key features needed for system integration are identified, namely: consistent level of refinement of each layer (i.e. spatial and temporal scales) and their application (e.g. evacuation planning or emergency response), and complete data exchange. Timelines of WUI fire events are analysed using an approach similar to building fire engineering (available vs. required safe egress times for WUI fires, i.e. WASET/WRSET). The proposed framework allows for a paradigm shift from current wildfire risk assessment and mapping tools towards dynamic fire vulnerability mapping. This is the assessment of spatial and temporal vulnerabilities based on the wildfire threat evolution along with variables related to the infrastructure, population and network characteristics. This framework allows for the integration of the three main modelling layers affecting WUI fire evacuation and aims at improving the safety of WUI communities by minimising the consequences of wildfire evacuations
Mutual Information for the Detection of Crush
Fatal crush conditions occur in crowds with tragic frequency. Event organizers and architects are often criticised for failing to consider the causes and implications of crush, but the reality is that both the prediction and prevention of such conditions offer a significant technical challenge. Full treatment of physical force within crowd simulations is precise but often computationally expensive; the more common method of human interpretation of results is computationally “cheap” but subjective and time-consuming. This paper describes an alternative method for the analysis of crowd behaviour, which uses information theory to measure crowd disorder. We show how this technique may be easily incorporated into an existing simulation framework, and validate it against an historical event. Our results show that this method offers an effective and efficient route towards automatic detection of the onset of crush
Radio-telemetric evidence of migration in the gregarious but not the solitary morph of the Mormon cricket (Anabrus simplex : Orthoptera: Tettigoniidae
Abstract The Mormon cricket, Anabrus simplex, is one of just a few species of katydids (or bushcrickets, Orthoptera: Tettigoniidae) that, like migratory locusts, appear to have solitary and migratory morphs. Using radio telemetry we studied movements of individuals of two morphs of this flightless species. Individuals within each migratory band had similar rates of movements along similar directional headings whereas solitary individuals moved little and showed little evidence of directionality in movement. Our results also add to other recent radio-telemetry studies showing that flightless insects of 1-2 g in mass can be tracked successfully using these methods
Prime ideals in nilpotent Iwasawa algebras
Let G be a nilpotent complete p-valued group of finite rank and let k be a
field of characteristic p. We prove that every faithful prime ideal of the
Iwasawa algebra kG is controlled by the centre of G, and use this to show that
the prime spectrum of kG is a disjoint union of commutative strata. We also
show that every prime ideal of kG is completely prime. The key ingredient in
the proof is the construction of a non-commutative valuation on certain
filtered simple Artinian rings
Increasing the simulation performance of large-scale evacuations using parallel computing techniques based on domain decomposition
Evacuation simulation has the potential to be used as part of a decision support system during large-scale incidents to provide advice to incident commanders. To be viable in these applications, it is essential that the simulation can run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of processors. This paper presents the development of a parallel version of the rule based evacuation simulation software buildingEXODUS using domain decomposition. Four Case Studies (CS) were tested using a cluster, consisting of 10 Intel Core 2 Duo (dual core) 3.16 GHz CPUs. CS-1 involved an idealised large geometry, with 20 exits, intended to illustrate the peak computational speed up performance of the parallel implementation, the population consisted of 100,000 agents; the peak computational speedup (PCS) was 14.6 and the peak real-time speedup (PRTS) was 4.0. CS-2 was a long area with a single exit area with a population of 100,000 agents; the PCS was 13.2 and the PRTS was 17.2. CS-3 was a 50 storey high rise building with a population of 8000/16,000 agents; the PCS was 2.48/4.49 and the PRTS was 17.9/12.9. CS-4 is a large realistic urban area with 60,000/120,000 agents; the PCS was 5.3/6.89 and the PRTS was 5.31/3.0. This type of computational performance opens evacuation simulation to a range of new innovative application areas such as real-time incident support, dynamic signage in smart buildings and virtual training environments
Comparative Dosimetric Analysis and Normal Tissue Complication Probability Modelling of Four-Dimensional Computed Tomography Planning Scans Within the UK NeoSCOPE Trial
Aims: NeoSCOPE is a trial of two different neoadjuvant chemoradiotherapy regimens for resectable oesophageal cancer and was the first multicentre trial in the UK to incorporate four-dimensional computed tomography (4D-CT) into radiotherapy planning. Despite 4D-CT being increasingly accepted as a standard of care for lower third and junctional oesophageal tumours, there is limited evidence of its benefit over standard three-dimensional computed tomography (3D-CT). // Materials: Using NeoSCOPE 4D-CT cases, we undertook a dosimetric comparison study of 3D-CT versus 4D-CT plans comparing target volume coverage and dose to organs at risk. We used established normal tissue complication probability models to evaluate the potential toxicity reduction of using 4D-CT plans in oesophageal cancer. // Results: 4D-CT resulted in a smaller median absolute PTV volume and lower dose levels for all reported constraints with comparable target volume coverage. NTCP modelling suggests a significant relative risk reduction of cardiac and pulmonary toxicity endpoints with 4D-CT. // Conclusion: Our work shows that incorporating 4D-CT into treatment planning may significantly reduce the toxicity burden from this treatment
- …