2,245 research outputs found

    Non-Markovian Quantum Jumps in Excitonic Energy Transfer

    Get PDF
    We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased exciton transport, which can be seen as an extension of recent environment-assisted quantum transport (ENAQT) concepts to the non-Markovian regime. Within the NMQJ method, the Fenna-Matthew-Olson protein is investigated as a prototype for larger photosynthetic complexes.Comment: 9 pages, 4 figures, submitted to Journal of Chemical Physic

    Asteroseismology of red-clump stars with CoRoT and Kepler

    Full text link
    The availability of asteroseismic constraints for a large number of red giants with CoRoT and in the near future with Kepler, paves the way for detailed studies of populations of galactic-disk red giants. We investigate which information on the observed population can be recovered by the distribution of the observed seismic constraints: the frequency of maximum power of solar-like oscillations (νmax\nu_{max}) and the large frequency separation (Δν\Delta\nu). We use the distribution of νmax\nu_{max} and of Δν\Delta\nu observed by CoRoT in nearly 800 red giants in the first long observational run, as a tool to investigate the properties of galactic red-giant stars through the comparison with simulated distributions based on synthetic stellar populations. We can clearly identify the bulk of the red giants observed by CoRoT as red-clump stars, i.e. post-flash core-He-burning stars. The distribution of νmax\nu_{max} and of Δν\Delta\nu give us access to the distribution of the stellar radius and mass, and thus represent a most promising probe of the age and star formation rate of the disk, and of the mass-loss rate during the red-giant branch. This approach will be of great utility also in the interpretation of forthcoming surveys of variability of red giants with CoRoT and Kepler. In particular, an asteroseismic mass estimate of clump stars in the old-open clusters observed by Kepler, would represent a most valuable observational test of the poorly known mass-loss rate on the giant branch, and of its dependence on metallicity.Comment: 5 pages, 6 figures, proceeding for "Stellar Pulsation: Challenges for Theory and Observation", Santa Fe 200

    Light Curve Patterns and Seismology of a White Dwarf with Complex Pulsation

    Full text link
    The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the observed periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.Comment: 5 pages, 6 figures, in "Stellar Pulsation: Challenges for Theory and Observation", Eds. J. Guzik and P. A. Bradley, AIP

    qTorch: The Quantum Tensor Contraction Handler

    Full text link
    Classical simulation of quantum computation is necessary for studying the numerical behavior of quantum algorithms, as there does not yet exist a large viable quantum computer on which to perform numerical tests. Tensor network (TN) contraction is an algorithmic method that can efficiently simulate some quantum circuits, often greatly reducing the computational cost over methods that simulate the full Hilbert space. In this study we implement a tensor network contraction program for simulating quantum circuits using multi-core compute nodes. We show simulation results for the Max-Cut problem on 3- through 7-regular graphs using the quantum approximate optimization algorithm (QAOA), successfully simulating up to 100 qubits. We test two different methods for generating the ordering of tensor index contractions: one is based on the tree decomposition of the line graph, while the other generates ordering using a straight-forward stochastic scheme. Through studying instances of QAOA circuits, we show the expected result that as the treewidth of the quantum circuit's line graph decreases, TN contraction becomes significantly more efficient than simulating the whole Hilbert space. The results in this work suggest that tensor contraction methods are superior only when simulating Max-Cut/QAOA with graphs of regularities approximately five and below. Insight into this point of equal computational cost helps one determine which simulation method will be more efficient for a given quantum circuit. The stochastic contraction method outperforms the line graph based method only when the time to calculate a reasonable tree decomposition is prohibitively expensive. Finally, we release our software package, qTorch (Quantum TensOR Contraction Handler), intended for general quantum circuit simulation.Comment: 21 pages, 8 figure

    Quantum Process Estimation via Generic Two-Body Correlations

    Get PDF
    Performance of quantum process estimation is naturally limited to fundamental, random, and systematic imperfections in preparations and measurements. These imperfections may lead to considerable errors in the process reconstruction due to the fact that standard data analysis techniques presume ideal devices. Here, by utilizing generic auxiliary quantum or classical correlations, we provide a framework for estimation of quantum dynamics via a single measurement apparatus. By construction, this approach can be applied to quantum tomography schemes with calibrated faulty state generators and analyzers. Specifically, we present a generalization of "Direct Characterization of Quantum Dynamics" [M. Mohseni and D. A. Lidar, Phys. Rev. Lett. 97, 170501 (2006)] with an imperfect Bell-state analyzer. We demonstrate that, for several physically relevant noisy preparations and measurements, only classical correlations and small data processing overhead are sufficient to accomplish the full system identification. Furthermore, we provide the optimal input states for which the error amplification due to inversion on the measurement data is minimal.Comment: 7 pages, 2 figure

    Modeling a Transient Pressurization with Active Cooling Sizing Tool

    Get PDF
    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank
    corecore