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Performance of quantum process estimation is naturally limited to fundamental, random, and systematic
imperfections in preparations and measurements. These imperfections may lead to considerable errors in the
process reconstruction due to the fact that standard data analysis techniques presume ideal devices. Here, by
utilizing generic auxiliary quantum or classical correlations, we provide a framework for estimation of quan-
tum dynamics via a single measurement apparatus. By construction, this approach can be applied to quantum
tomography schemes with calibrated faulty state generators and analyzers. Specifically, we present a general-
ization of “Direct Characterization of Quantum Dynamics” [M. Mohseni and D. A. Lidar, Phys. Rev. Lett.97,
170501 (2006)] with an imperfect Bell-state analyzer. We demonstrate that, for several physically relevant noisy
preparations and measurements, only classical correlations and small data processing overhead are sufficient to
accomplish the full system identification. Furthermore, weprovide the optimal input states for which the error
amplification due to inversion on the measurement data is minimal.

PACS numbers: 03.65.Wj, 03.67.-a, 03.67.Pp

I. INTRODUCTION

Quantum measurement theory imposes fundamental limita-
tions on the information extractable from a quantum system.
Although the evolution of quantum systems can be described
deterministically, the measurement operation always leads to
nondeterministic outcomes. In order to obtain a desired ac-
curacy, measurement of a particular observable needs to be
repeated over an ensemble of identical quantum systems. In
addition, for systems with many degrees of freedom, one usu-
ally needs to measure a set of non-commuting observables
corresponding to independent parameters of the system. Char-
acterization of state or dynamics of a quantum system can
be achieved by a family of methods known as quantum to-
mography [1, 2]. In particular, quantum process tomography
provides a general experimental procedure for estimating dy-
namics of a system which has an unknown interaction with its
embedding environment for discrete or continuous degrees of
freedom [2, 3, 4, 5, 6]. In these methods, the full information
is obtained by a complete set of experimental settings associ-
ated with the set of required input states and non-commuting
measurements. In recent developments [3, 4, 7, 8, 9, 10], it
has been demonstrated that the minimal number of required
experimental settings can indeed be substantially reducedby
using degrees of freedom of auxiliary quantum systems corre-
lated with the system of interest.

Generally it is possible to completely characterize a quan-
tum device with a single experimental setting. A correlated
input state of the combined system and an ancilla is subjected
to the unknown process, and a generalized measurement or
Positive Operator Valued Measure (POVM) is performed at
the output [11, 12]. However, in order to realize such a gener-
alized measurement one needs to effectively generate many-
body interactions [12] which are not naturally available and/or

controllable. Quantum simulation of such many-body interac-
tions is in principle possible, but generally requires an expo-
nentially large number of single- and two-body interactions
with respect to system’s degrees of freedom. An alternative
method that circumvents the requirement for many-body in-
teractions, yet allows simultaneous non-commuting observ-
ables through a single measurement setting, is known as Di-
rect Characterization of Quantum Dynamics (DCQD) [4, 8].
The construction of the full information about the dynami-
cal process is then possible via preparation of a set of mu-
tually unbiased entangled input states over a subspace of the
total Hilbert space of the principle system and an ancilla [8].
The DCQD approach was originally developed with the as-
sumptions of ideal (i.e., error-free) quantum state preparation,
measurement, and ancilla channels. However, in a realis-
tic estimation process, due to decoherence, limited prepara-
tion/measurement accuracies, or other imperfections, certain
errors may occur hindering the overall procedure.

In this work, we introduce an experimental procedure for
using generic two-body interactions to perform quantum pro-
cess estimation on a subsystem of interest. We employ this ap-
proach to generalize the DCQD scheme to the cases in which
the preparations and measurements are realized with known
systematic faulty operations. We demonstrate that in some
specific, but physically motivated, noise models, such as the
generalized depolarizing channels, only classical correlation
between the system and ancilla suffice. Moreover, for these
situations the data processing overhead is fairly small in com-
parison to the ideal DCQD. Given a noise model, one can
find the optimal input states by minimizing the errors incurred
through the inversion of experimental data. Thus, we provide
the optimal input states for reducing the inversion errors in the
noiseless DCQD scheme.

The structure of the paper is as follows. In Sec. II, we
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set the framework for process tomography schemes where we
have faulty — rather than ideal — faulty Bell-state analyz-
ers, emphasizing the DCQD approach. Next, in Sec. III, we
demonstrate the applicability of our framework through some
simple, yet important examples of noise models. We conclude
by summarizing the paper in Sec. IV.

II. CHARACTERIZATION OF QUANTUM PROCESSES
WITH A FAULTY BELL-STATE ANALYZER

Let us consider a given quantum system composed of two
correlated physical subsystemsA andB. For a time duration
∆t the two subsystems are decoupled, thus experiencing dif-
ferent quantum processes, and then they interact with each
other again. The task is to characterize the unknown quan-
tum process acting on the subsystem of interestA, assuming
we have prior knowledge about the dynamics of subsystemB
plus their initial and final correlations. Another similar sce-
nario can also be envisioned. Given two controllable quantum
systemsA andB that are made to sufficiently interact before
and after a time duration∆t, we wish to estimate the unknown
dynamics acting on systemA for such time interval, assum-
ing the dynamics of the ancilla systemB and the interaction
between two systems is known with a certain accuracy.

Much progress has been made in creating and characteriz-
ing two-body correlations in a variety of physical systems and
interactions, including nuclear magnetic resonance (NMR)
systems interacting through an Ising Hamiltonian together
with refocusing or dynamical decoupling techniques [13],
atoms/molecules in cavity quantum electrodynamics (QED)
[14], trapped ions interacting via the Jaynes-Cummings
Hamiltonian driven by laser pulses and vibrational degrees
of freedom [15], and photons correlated in one or many de-
grees of freedom, e.g., generated by parametric-down conver-
sion [16] or four-wave mixing [17]. Other approaches include
spin-coupled quantum dots [18], superconducting qubits [19]
controlled by external electric and/or magnetic fields, and
chromophoric complexes coupled through Forster/Dexter in-
teractions and monitored or controlled via ultra-fast nonlin-
ear spectroscopy [20]. However, in almost all of these sys-
tems, the entangled Bell-state preparations and measurements,
which generically are the basic building blocks of quantum
information processing, hardly achieve high fidelities; atthe
very least they are certain to be imperfect at some level, and
this will limit their use for tomography. Our goal is to deter-
mine the optimal states and measurement strategy that will
minimize the deleterious effects of the nonidealities — as-
sumed known — on process tomography.

We consider the cases where we can simulate initial or fi-
nal two-body correlations in the above schemes by performing
an ideal (generalized) Bell-state preparation (or measurement)
followed by aknownfaulty completely-positive (CP) quantum
map acting on the entire systems involved. It should be noted
that not every CP maps can be written as concatenation of two
other CP maps. In other words, there exist CP maps that are
“indivisible”, in the sense that, for such a mapT , there do not
exist CP mapsT1 andT2 such thatT = T2T1, where neither

E

E (T)

E (i) E (f)

FIG. 1: (color online) Schematic of a faulty DCQD, with imper-
fect or noisy Bell-state preparation (BSP) and Bell-state measure-
ment (BSM).

T1 or T2 are unitary [21]. Nonetheless, all full-rank CP maps
— in the sense of the Kraus representation [2] — are divisible.

Here, we include quantum maps acting on systemB in the
preparation or measurement maps. This approach naturally
provides a generalization of the DCQD scheme to the cases of
faulty preparations, measurement and ancilla channels where
the noise is already known — see Fig. 1. For simplicity, in
this work we concentrate only on one-qubit systems and the
DCQD scheme (summarized in Table I). However, general-
ization of the framework is straightforward for other process
estimation schemes and for DCQD on qudit systems withd
being a power of a prime (according to the construction of
Ref. [8]).

Let us consider the qubit of interestA and the ancil-
lary qubit B prepared in the maximally entangled state
|Φ+〉AB = (|00〉 + |11〉)AB/

√
2. We first apply a

known quantum error mapE(i) to A and B: E(i)(ρ) =∑
pqrs χ

(i)
pqrsσA

p σB
q ρσB

r σA
s , where ρ = |Φ+〉 〈Φ+| and

{σ0 ≡ 11, σ1, σ2, σ3} are the identity and Pauli operator for
a single qubit. Next, we apply the unknown quantum map
E to qubit A; this is what we are trying to determine:
E [E(i)(ρ)] =

∑
mn χmnσA

m(
∑

pqrs χ
(i)
pqrsσA

p σB
q ρσB

r σA
s )σA

n .
Finally, we apply aknownquantum error map before the Bell-
state measurement. Note that in this approach any error on
the ancilla channel can be absorbed into eitherE(f) or E(i).
The total map acting on the combined systemAB is then

TABLE I: The ideal direct characterization of single-qubitχ. Here
|Φ+

α 〉 = α|00〉 + β|11〉, |Φ+
α 〉x(y) = α| + +〉x(y) + β| − −〉x(y)

where|α| 6= |β| 6= 0 and Im(ᾱβ) 6= 0, and{|0〉, |1〉}, {|±〉x},
{|±〉y} are eigenstates of the Pauli operatorsσz , σx, andσy. PΦ+

is the projector on the Bell state|Φ+〉, and similarly for the other
projectors. See Refs. [4, 12]. Determination of optimal values ofα
andβ is discussed in the text.

input state Bell-state measurement outputχmn

|Φ+〉 PΨ± , PΦ± χ00, χ11, χ22, χ33

|Φ+
α 〉 PΦ+ ± PΦ− , PΨ+ ± PΨ− χ03, χ12

|Φ+
α 〉x PΦ+ ± PΨ+ , PΦ− ± PΨ− χ01, χ23

|Φ+
α 〉y PΦ+ ± PΨ− , PΦ− ± PΨ+ χ02, χ13
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E(T) = E(f) ◦ E ◦ E(i), given by

E(T)(ρ) =
∑

mnpp′qq′rr′ss′

χmnχ(i)
pqrsχ

(f)
p′q′r′s′ ×

σA
p′σB

q′σA
mσA

p σB
q ρσB

r σA
s σA

n σB
r′σA

s′ ,

where the parametersχ(i)
pqrs and χ

(f)
p′q′r′s′ are known (from

calibration of the operational/systematic errors in the prepa-
ration and measurement devices). By definingωmnp′s′ =

(−1)(δm0−1)(δp′0−1)δmp′+(δn0−1)(δs′0−1)δns′ and ρ̃mn =∑
pp′qq′rr′ss′ ωmnp′s′χ

(i)
pqrsχ

(f)
p′q′r′s′σA

p′σB
q′σA

p σB
q ρσB

r σA
s σB

r′σA
s′ ,

we have

E(T)(ρ) =
∑

mn χmnσA
mρ̃mnσA

n .

By construction, the parametersχ
(i)
pqrs andχ

(f)
p′q′r′s′ are alla

priori known, as are the matrices̃ρmn which are functions of
χ

(i), χ(f), and the initial stateρ. Therefore, in order to develop
a generalized DCQD scheme for the systems with faulty Bell-
state preparation (BSP) and measurement (BSM), we need to
do it for a set of modified (input) states rather than a pure
Bell-state type input. Expanding̃ρmn in the Bell basis yields

ρ̃mn =
∑

kk′ λkk′

mnP kk′

,

where λkk′

mn = Tr[P kk′

ρ̃mn], P kk′

=
∣∣Bk

〉 〈
Bk′

∣∣∣, and

|Bk〉 for k = 0, 1, 2, 3 corresponds to the Bell-states|Φ+〉,
|Ψ+〉, |Ψ−〉, and|Φ−〉, respectively, where|Φ±〉 = (|00〉 ±
|11〉)/

√
2, |Ψ±〉 = (|01〉 ± |10〉)/

√
2. (Henceforth through-

out this manuscript, superscripts refer to the Bell-state basis
and subscripts refer to the Pauli operator basis.) Theλkk′

mns are
known functions ofωmnp′s′ , χ

(f), χ
(i), andρ. Therefore, the

overall output state can be rewritten as follows:

E(T)(ρ) =
∑

kk′mn λkk′

mnχmnσA
mP kk′

σA
n .

We now apply the standard DCQD data analysis to esti-
mate the matrix elements ofχ(T) (representingE(T)). After
performing a BSM, i.e., measuring{P jj}3

j=0 on this state, we
obtain the Bell-state|Bj〉 with probability

Tr[P jjE(T)(ρ)] =
∑

kk′mn Λ
(j)
kk′,mnχmn,

whereΛ
(j)
kk′,mn = λkk′

mnTr[P jjσA
mP kk′

σA
n ]. Although this ex-

pression can be made more compact by using Pauli identities,
the current form is convenient for our purposes.

A similar set of equations for the standard DCQD inputs
{ρ(i)}3

i=0 can also be written. We represent all of these equa-
tions in a compact vector form as

|χ(T)) = Λ|χ), (1)

where theΛ(χ(i), χ(f), {ρ(i)}) matrix contains full informa-
tion about all faulty experimental conditions. Givenχ(i),
χ

(f), and the standard DCQD input set{ρ(i)}, one can cal-
culate theΛ matrix. The standard DCQD experimental data
(analysis) will also determine|χ(T)). Now, if the Λ matrix
is invertible, from Eq. (1) one can obtainχ by inversion:
|χ) = Λ−1|χ(T)). The invertibility of theΛ matrix, namely
detΛ 6= 0, depends on the input states{ρ(i)} and the noise
operationsχ(i) and χ

(f). It may happen that theΛ matrix
becomes ill-conditioned [22] for a specific set of input states
(for some given noise operationsχ

(i) andχ
(f)). In such cases,

even small errors (whether operational, stochastic, or round-
off) in estimation ofχ(T) can be amplified dramatically after
multiplication byΛ−1. This in turn may render the estimation
of χ (the sought-for unknown mapE) completely unreliable.
To minimize the statistical errors, the input states shouldbe
chosen such thatdetΛ is as far from zero as possible. There-
fore, the optimal input states{ρi

opt} [optimal in the sense of
minimizing statistical errors] for givenχ(i) andχ

(f) are ob-
tained via maximizingdetΛ. A similar faithfulnessmeasure
has already been used in Refs. [7, 23]. In Appendix B, we
derive the optimal input states for the case of the ideal DCQD
scheme.

III. PROCESS ESTIMATION WITH SPECIFIC NOISY
DEVICES

In the following we describe several examples which de-
scribe relevant physical noise models.

A. Depolarizing channels: Correlated noise

An important and practically relevant example is the situ-
ation in whichE(i) andE(f) both are two-qubit (hence corre-
lated) depolarizing channelsD[2] [24, 25]

ρ(i) D[2]
ε→ 1 − ε

4
11⊗ 11 + ερ(i),

P jj
D

[2]

ε′→ 1 − ε′

4
11⊗ 11 + ε′jj ,

whereε andε′ could be independent of each other or corre-
lated (e.g.,ε = ε′). These errors result in the following noisy
data processing of the measurement results of DCQD:

Tr[E(ρ(i))P jj ] → (1 − ε)(1 − ε′)

16
Tr[E(11) ⊗ 11] +

ε′(1 − ε)

4
Tr[E(11) ⊗ 11P jj ] +

ε(1 − ε′)

4
Tr[E(ρ(i))] + εε′Tr[E(ρ(i))P jj ]. (2)
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For the Hamiltonian identification task [26, 27],E(ρ) =
e−iHtρeiHt (which is unital:E(11) = 11, and trace-preserving:
Tr[E(ρ)] = 1), we obtain

Tr[E(ρ(i))P jj ] → εε′Tr[E(ρ(i))P jj ] + (1 − εε′)/4. (3)

This relation provides a simple connection between the ideal
and the noisy data processing rules. Another feature of Eq. (3)
is that it is valid irrespective of the values ofε andε′ ( 6= 0).
This implies that, whetherε and ε′ are in the range which
makes the noisy preparation/BSM separable or not [28, 29],
the simplicity and applicability of (the modified) DCQD re-
main intact. In other words, entanglement is not an imperative
in the DCQD algorithm.

A generalization of this noise model is the case in which the
preparations are modified based on a generalized two-qubit
depolarizing channels [24]:

ρ(i)
eD[2]

ε→ 1 − ε

4
11⊗ 11 + εUρ(i)U †,

in which U is an already known two-qubit unitary operator.
To simplify the following discussion we assume that BSMs
are noiseless (E(f) = I). Finding the explicit form ofχ(i) is
straightforward. We use the form

ρ = 1
4 (11⊗ 11 +

∑′3

m,n=0rmnσm ⊗ σn),

where
∑′ denotes the constrained summation in which the

case(m, n) = (0, 0) has been excluded. Using the identity
σkσlσk = (−1)1−δklσl, we have: 1

4

∑3
ab=0 σa ⊗ σbρσa ⊗

σb = ρ + 3
411⊗ 11, or equivalently:

∑3
ab=0 pabσa ⊗ σbρσa ⊗

σb = 11 ⊗ 11, wherepab = 1/3 except forp00 = −1. In
addition, we expandU in the {σm ⊗ σn}3

mn=0 basis:U =∑
mn amnσm ⊗ σn. Altogether, these relations yield

D̃[2]
ε (ρ) =

1 − ε

4

∑

mn

pmnσm ⊗ σnρσm ⊗ σn

+ε
∑

mn,m′n′

amnām′n′σm ⊗ σnρσm′ ⊗ σn′ .

Hence, we obtain:χ(i)
mnmn = pmn(1 − ε)/4 + ε|amn|2 (the

diagonal elements) andχ(i)
mnm′n′ = εamnām′n′ for (m, n) 6=

(m′, n′) (the off-diagonal elements). In a compact form, the
effect of this noise channel can be expressed as follows:

Tr[E(ρ(i))P jj ] →
(1 − ε)(1 − ε′)

16
Tr[E(11) ⊗ 11] +

ε′(1 − ε)

4
Tr[E(11) ⊗ 11P jj ]

+
ε(1 − ε′)

4
Tr[E(Uρ(i)U †)] + εε′Tr[E(Uρ(i)U †)P jj ]. (4)

Under trace-preserving and unitality conditions, the finaldata
processing is thus modified as follows:

Tr[E(ρ(i))P jj ] → εε′Tr[E(Uρ(i)U †)P jj ] + (1 − εε′)/4. (5)

Although this is not as simple as Eq. (3), it yet retains a con-
siderable simplicity.

B. Depolarizing channels: Uncorrelated noise

We assume that the input states and our measurements are
diluted by depolarizing channels [28, 29] actingseparatelyon
the principal and ancilla qubits, i.e.,D ⊗ D, whereD acts on
a general single-qubit stateρ as follows:Dε(ρ) = 1−ε

2 11+ερ,

or equivalently:Dε(ρ) =
∑3

j=0 pjσjρσj , wherep0 = (1 +

3ε)/4 andp1 = p2 = p3 = (1 − ε)/4, and positivity and
complete-positivity ofDε require−1/3 6 ε 6 1 [30].

As a special case we specialize on the characterization of
the diagonal elementsχkk. This is particularly important in
Hamiltonian identification tasks [26, 27]. It can be easily seen
that for Bell-statesP kk we obtain

P kk Dε⊗Dε−→ 1 − ε2

4
11⊗ 11 + ε2P kk.

Thus, to estimateχkk, the necessary data processing is mod-
ified as in Eqs. (2) and (3) by replacing:εε′ → (εε′)2 and
i → 0 (recall thatρ(0) = |Φ+〉〈Φ+|). Here we have as-
sumed that the input (measurement) depolarizing parameter
is ε (ε′). This result implies that to estimate the diagonal el-
ementsχkk, whether under correlated noise or uncorrelated
noise, the DCQD scheme is robust and classical data process-
ing is modified in a simple fashion. This has immediate appli-
cations to the task of Hamiltonian identification [26].

C. Generalized depolarizing channels

Here, we assume that the input states and/or measurements
are diluted such that they effectively lead to (known) Bell-
diagonal input states and/or Bell-diagonal measurements.
Thus we obtain

ρ(i) Bε→
∑3

i′=0 εii′ρ
(i′),

P jj Bε′→
∑3

j′=0 ε′jj′P
j′j′ .

This noise results in the following noisy data processing ofthe
measurement results of DCQD:

Tr[E(ρ(i))P jj ] →
∑

i′j′ εii′ε
′
jj′Tr[E(ρ(i′))P j′j′ ]. (6)

That is, every measurement result of the new setting is a linear
combination of the ideal results. If we define the vector|p) =
(pij)

T , wherepij = Tr[E(ρ(i))P jj ], namely

|p) =
(
Tr[E(ρ(0))P 00], Tr[E(ρ(0))P 11], . . . , Tr[E(ρ(3))P 33]

)T
,

and the matrixAij,i′j′ = εii′ε
′
jj′ , then (6) can be written as

the following linear matrix transformation (see Appendix A):

|p) → A|p). (7)

If we arrange the output elements as in Table I, we will have

|p̃) = C|p), (8)

whereC is the (constant) coefficient matrix, hence|p̃) →
AC−1|p̃).
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IV. SUMMARY

We have provided a scheme for utilizing auxiliary quantum
correlations to perform process estimation tasks with faulty
quantum operations. We have demonstrated our approach
via generalizing the ideal scheme of Direct Characterization
of Quantum Dynamics (DCQD) where the required prepara-
tions and measurements could be noisy. It has been shown
that when the systematic faulty operations are of the form of
depolarizing channels, the overhead data processing is fairly
simple. Moreover, these examples have revealed that for the
DCQD scheme, entanglement is secondary. This, in turn,
broadens the range of applicability of our scheme to quan-

tum systems with certain controllable classical correlations
of their subsystems. Therefore, our proposed method may
have near-term applications to a variety of realistic quantum
systems/devices with the current state-of-technology, such as
trapped ions, liquid-state NMR, optical lattices, and entangled
pairs of photons.

We thank Natural Sciences and Engineering Research
Council of Canada (NSERC), Faculty of Arts and Sciences
of Harvard University, Army Research Office (ARO) [project
W911NF-07-1-0304], Mathematics of Information Technol-
ogy and Complex Systems (MITACS), Pacific Institute for
Mathemaical Sciences (PIMS), and the USC Center for Quan-
tum Information Science and Technology for funding.

APPENDIX A: EXPLICIT FORM OF EQ. (8)

Table I suggests that if, instead of the conventional BSMs, we consider the expression




Tr[P 00E(ρ(0))]

Tr[P 11E(ρ(0))]

Tr[P 22E(ρ(0))]

Tr[P 33E(ρ(0))]

Tr[P 00E(ρ(1))]+Tr[P 33E(ρ(1))]

Tr[P 11E(ρ(1))]+Tr[P 22E(ρ(1))]

Tr[P 00E(ρ(1))]−Tr[P 33E(ρ(1))]

Tr[P 11E(ρ(1))]−Tr[P 22E(ρ(1))]

Tr[P 00E(ρ(2))]+Tr[P 11E(ρ(2))]

Tr[P 22E(ρ(2))]+Tr[P 33E(ρ(2))]

Tr[P 00E(ρ(2))]−Tr[P 11E(ρ(2))]

Tr[P 33E(ρ(2))]−Tr[P 22E(ρ(2))]

Tr[P 00E(ρ(3))]+Tr[P 22E(ρ(3))]

Tr[P 11E(ρ(3))]+Tr[P 33E(ρ(3))]

Tr[P 00E(ρ(3))]−Tr[P 22E(ρ(3))]

Tr[P 33E(ρ(3))]−Tr[P 11E(ρ(3))]




=




1
1

1
1

1 1
1 1

1 −1
1 −1

1 1
1 1

1 −1
−1 1

1 1
1 1

1 −1
−1 1







Tr[P 00E(ρ(0))]

Tr[P 11E(ρ(0))]

Tr[P 22E(ρ(0))]

Tr[P 33E(ρ(0))]

Tr[P 00E(ρ(1))]

Tr[P 11E(ρ(1))]

Tr[P 22E(ρ(1))]

Tr[P 33E(ρ(1))]

Tr[P 00E(ρ(2))]

Tr[P 11E(ρ(2))]

Tr[P 22E(ρ(2))]

Tr[P 33E(ρ(2))]

Tr[P 00E(ρ(3))]

Tr[P 11E(ρ(3))]

Tr[P 22E(ρ(3))]

Tr[P 33E(ρ(3))]




, (A1)

the results of the measurements can be related to theχmn elements in a more straightforward fashion. Here, the constant
coefficient matrix (C) relates the results of the new BSMs (p̃) to those of the conventional BSMs (p).

APPENDIX B: OPTIMAL INPUT STATES FOR THE IDEAL (NOISELESS) DCQD

Here, we find the optimal input states for the ideal DCQD. The idea is to choose the input states such that the (linear) inversion
on the experimental data (to read outχ matrix elements) can be performed reliably. That is, the goal should be to make the
coefficient matrix as far from singular matrices as possible. Maximizing the determinant of this matrix is a sufficient condition
to guarantee its reliable invertibility, hence in turn, minimal error propagation.

The data obtained from the measurements (BSMs) are Tr
[
E(ρ(i))P jj

]
, where{ρ(i)} corresponds to the first column of Table I,

respectively, fori = 0, 1, 2, 3. We parameterize the input states byα = cos θ andβ = eiϕ sin θ (ϕ 6= kπ, k ∈ Z). Using relation
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FIG. 2: The value of|detΛ| vs θ andϕ. Here, the coefficient matrixΛ(θ, ϕ) relates the experimental outcomes to the unknown elements
of the superoperator|χ(T)) = Λ|χ). The input states for the standard DCQD, as defined in Table I,e.g., |Φ+

α 〉 = α|00〉 + β|11〉, are
parameterized asα = cos θ andβ = eiϕ sin θ (ϕ 6= kπ, k ∈ Z). The optimal input states are associated to those parameters for which
|detΛ| has its maximal value 1, leading to a minimal statistical error.

(A1), one can express Eq. (1), for the standard DCQD [4], as the following:




Tr[P 00E(ρ(1))]

Tr[P 11E(ρ(1))]

Tr[P 22E(ρ(1))]

Tr[P 33E(ρ(1))]

Tr[P 00E(ρ(2))]+Tr[P 33E(ρ(2))]

Tr[P 11E(ρ(2))]+Tr[P 22E(ρ(2))]

Tr[P 00E(ρ(2))]−Tr[P 33E(ρ(2))]

Tr[P 11E(ρ(2))]−Tr[P 22E(ρ(2))]

Tr[P 00E(ρ(3))]+Tr[P 11E(ρ(3))]

Tr[P 22E(ρ(3))]+Tr[P 33E(ρ(3))]

Tr[P 00E(ρ(3))]−Tr[P 11E(ρ(3))]

Tr[P 33E(ρ(3))]−Tr[P 22E(ρ(3))]

Tr[P 00E(ρ(4))]+Tr[P 22E(ρ(4))]

Tr[P 11E(ρ(4))]+Tr[P 33E(ρ(4))]

Tr[P 00E(ρ(4))]−Tr[P 22E(ρ(4))]

Tr[P 33E(ρ(4))]−Tr[P 11E(ρ(4))]




=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 x 0 0 0 0 0 0 0 0 x 0 0 1
0 0 0 0 0 1 −ix 0 0 ix 1 0 0 0 0 0
z 0 0 iy 0 0 0 0 0 0 0 0 −iy 0 0 −z
0 0 0 0 0 z y 0 0 y −z 0 0 0 0 0
1 x 0 0 x 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −ix 0 0 ix 1
z iy 0 0 −iy −z 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 z y 0 0 y −z
0 0 0 0 0 1 0 −ix 0 0 0 0 0 ix 0 1
1 0 −x 0 0 0 0 0 −x 0 1 0 0 0 0 0
0 0 0 0 0 −z 0 −y 0 0 0 0 0 −y 0 z
−z 0 iy 0 0 0 0 0 −iy 0 z 0 0 0 0 0







χ00
χ01
χ02
χ03
χ10
χ11
χ12
χ13
χ20
χ21
χ22
χ23
χ30
χ31
χ32
χ33




,

where in the coefficient matrixΛ(θ, ϕ) we havex = cos 2θ, y = sin 2θ sinϕ, andz = sin 2θ cosϕ. The determinant of this
matrix is obtained as

| detΛ| = sin6 4θ sin6 ϕ,

which attains its maximum value1 at (θ = π/8 + kπ/4, ϕ = π/2 + k′π), ∀k, k′ ∈ Z — Fig. 2. Therefore, the optimal input
states{ρ(i)} for the standard DCQD are as in Table I in whichµ andν are either of the pairs calculated from the above maximal
set ofθ andϕ. A simple calculation shows that the amount of entanglement(exactly speaking, concurrence [31]) of the optimal
non-maximally entangled input states is1/

√
2 (independent ofϕ).
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