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Quantum Process Estimation via Generic Two-Body Correlations
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Performance of quantum process estimation is naturallitdomto fundamental, random, and systematic
imperfections in preparations and measurements. Theserfiegtions may lead to considerable errors in the
process reconstruction due to the fact that standard datgsimtechniques presume ideal devices. Here, by
utilizing generic auxiliary quantum or classical corr@as, we provide a framework for estimation of quan-
tum dynamics via a single measurement apparatus. By catistiuthis approach can be applied to quantum
tomography schemes with calibrated faulty state geneyatiod analyzers. Specifically, we present a general-
ization of “Direct Characterization of Quantum DynamicM.[Mohseni and D. A. Lidar, Phys. Rev. Lef7,
170501 (2006)] with an imperfect Bell-state analyzer. Weadestrate that, for several physically relevant noisy
preparations and measurements, only classical cornetatind small data processing overhead are sufficient to
accomplish the full system identification. Furthermore,pr@vide the optimal input states for which the error
amplification due to inversion on the measurement data ighmain

PACS numbers: 03.65.Wj, 03.67.-a, 03.67.Pp

I. INTRODUCTION controllable. Quantum simulation of such many-body intera
tions is in principle possible, but generally requires apcex

. ... nentially large number of single- and two-body interacsion
Quantum measurement theory imposes fundamental IImItav'vith respect to system’s degrees of freedom. An alternative

tions on the information extractable from a quantum system, ; . .
i . ethod that circumvents the requirement for many-body in-
Although the evolution of quantum systems can be describe . : .
eractions, yet allows simultaneous non-commuting observ

deterministically, the measurement operation alwayss¢ad ables through a single measurement setting, is known as Di-

nondeterministic outcomes. In order to obtain a desired acr—ect Characterization of Quantum Dynamics (DCQD)[[4, 8.

curacy, measurement of a particular observable needs to bl% . . . ;
. ) e construction of the full information about the dynami-
repeated over an ensemble of identical quantum systems. In

addition, for systems with many degrees of freedom, one us cal process is then possible via preparation of a set of mu-
’ y y deg ) ' L{ually unbiased entangled input states over a subspace of th
ally needs to measure a set of non-commuting observabl

corresponding to independent parameters of the systenm- Ch(?8tal Hilbert space of the principle system and an andilla (8

acterization of state or dynamics of a quantum system canhe DCQD approach was originally developed with the as-

be achieved by a family of methods known as quantum to:sumptlons of ideal (i.e., error-free) quantum state pratpar,

mography[L[2]. In particular, quantum process tomograph measurement, and ancilla channels. However, in a realis-
grapny - 1N particuiar, g P MOGrapiy, - ostimation process, due to decoherence, limited paepar
provides a general experimental procedure for estimatyag d .. . ; ) .
. g . : 2~ tion/measurement accuracies, or other imperfectionsaicer
namics of a system which has an unknown interaction with its . .
. ) . : errors may occur hindering the overall procedure.
embedding environment for discrete or continuous degrees o
freedom|[2] B[ 14,19,/6]. In these methods, the full informatio  In this work, we introduce an experimental procedure for
is obtained by a complete set of experimental settings assodIsing generic two-body interactions to perform quantuns pro
ated with the set of required input states and non-commutingess estimation on a subsystem of interest. We employ this ap
measurements. In recent developmehts$|[3] 4] 7| 18,19, 10], Rroach to generalize the DCQD scheme to the cases in which
has been demonstrated that the minimal number of requiredte preparations and measurements are realized with known
experimental settings can indeed be substantially redoged syste_r_nauc faulty _operatlon_s. We de_monstrate that in some
using degrees of freedom of auxiliary quantum systems eorrespecific, but physically motivated, noise models, such as th
lated with the system of interest. generalized depolarizing channels, only classical caticet

Generally it is possible to completely characterize a quanpetween the system and ancilla suffice. Moreover, for these

tum device with a single experimental setting. A correlated's'tu_""t'ontS t?ﬁ da(;a pir%cgsslgngeqverhead is fairly Zmlakbmc
input state of the combined system and an ancilla is sutnjectepar'son 0 the idea QD. IVen a noise model, one can
to the unknown process, and a generalized measurement rl]dthe optimal input states by minimizing the errors inedlrr

Positive Operator Valued Measure (POVM) is performed al:h:eoggtri]ntgleiLngftrzig?eszgi(E:(;m?nng;?:\cej?rg?/é:—s?grf ’evrvr;rtpi;é\/id
the outputl[141], 12]. However, in order to realize such agener
ey J. However, i 2e su Qplseless DCQD scheme.

alized measurement one needs to effectively generate man
body interactions [12] which are not naturally availablel/am The structure of the paper is as follows. In Set. Il, we
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set the framework for process tomography schemes where we
have faulty — rather than ideal — faulty Bell-state analyz-

ers, emphasizing the DCQD approach. Next, in §ek. Ill, we A
demonstrate the applicability of our framework through som
simple, yetimportant examples of noise models. We conclude B
by summarizing the paper in S&clIV.

Il. CHARACTERIZATION OF QUANTUM PROCESSES noisy BSP noisy BSM

WITH A FAULTY BELL-STATE ANALYZER
FIG. 1: (color online) Schematic of a faulty DCQD, with imper
Hect or noisy Bell-state preparation (BSP) and Bell-statasure-

Let us consider a given quantum system composed of twrnent (BSM).

correlated physical subsystemsand B. For a time duration
At the two subsystems are decoupled, thus experiencing dif-
ferent quantum processes, and then they interact with each

other again. The task is to characterize the unknown quany, or 7; are unitary[[2lL]. Nonetheless, all full-rank CP maps
tum process acting on the subsystem of intergsassuming  __jj the sense of the Kraus representation [2] — are divisible
we have prior knowledge about the dynamics of subsydtem : . :

plus their initial and final correlations. Another similares Here, we include quantum maps acting on sysfein the

nario can also be envisioned. Given two controllable quantu Préparation or measurement maps. This approach naturally
systemsA and B that are made to sufficiently interact before Provides a generalization of the DCQD scheme to the cases of
and after a time duratioAt, we wish to estimate the unknown faulty preparations, measurement and ancilla channelsevhe
dynamics acting on systen for such time interval, assum- (he noise is already known — see Fig. 1. For simplicity, in
ing the dynamics of the ancilla systefand the interaction this work we concentrate onIy_ on one-qubit systems and the
between two systems is known with a certain accuracy. DCQD scheme (summarized in Talle I). However, general-

Much progress has been made in creating and characteri?—aﬁon Qf the framework is straightforward f_or other prese
ing two-body correlations in a variety of physical systemd a estimation schemes af_‘d for DCQD on qudit systems W'th
interactions, including nuclear magnetic resonance (NMR?{e'ng a power of a prime (according to the construction of
systems interacting through an Ising Hamiltonian togethe ef. [8]).
with refocusing or dynamical decoupling techniques| [13], Let us consider the qubit of interest and the ancil-
atoms/molecules in cavity quantum electrodynamics (QED)ary qubit B prepared in the maximally entangled state

[14], trapped ions interacting via the Jaynes-Cumming$®*)ap = (|00) + [11))ap/v2. We first apply a
Hamiltonian driven by laser pulses and vibrational degreegnown quantum error magf) to A and B: £W(p) =
of freedom [15], and photons correlated in one or many dezpqrS xggrsafafpafga?, where p = [®T)(d*| and

grees of freedom, e.g., generated by parametric-down conve o0 = 1,01,00,03} are the identity and Pauli operator for

sion [16] or four-wave mix7]. Other approaches in@ud 5 gingle qubit. Next, we apply the unknown quantum map
spin-coupled quantum dofs [18], superconducting qubfi§ [1 ¢ ', qubit A; this is what we are trying to determine:
controlled by external electric and/or magnetic fields, and ) A B B A\ A

() _ A
chromophoric complexes coupled through Forster/Dexter inlgzi[rfall(p \)/]/e_a ;m&%‘gﬁgﬂa (a%ﬁqrfrf gﬁ‘gﬁapaaqb’é ?Srgstrignéell-
teractions and monitored or controlled via ultra-fast ironl Y pply q P

ear spectroscopy [20]. However, in almost all of these Sys_state measurement. Note that in this approach any error on

: the ancilla channel can be absorbed into eitfiér or £,
tems, the entangled Bell-state preparations and measnotgme The total map acting on the combined svstelf is then
which generically are the basic building blocks of quantum P acting : y !
information processing, hardly achieve high fidelitiesthet
very least they are certain to be imperfect at some level, and
this will limit their use for tomography. Our goal is to deter ) ) o ) )
mine the optimal states and measurement strategy that willABLE I: The ideal direct characterization of single-quiit Here

inimi - dealit @) = alo0) + BILL), [91)uq) = al + +ag) + Bl — —)a
minimize the deleterious effects of the nonidealities — asi e a/z(y) o (y) e(y)
sumed known — on process tomography. wherela| # |6] # 0 andIm(af) 2 0, and{[0), [1)}, {).},

Wi ider th h imul initial f_{|i>y} are eigenstates of the Pauli operaters o, ando,. Pg+

e consider the cases where we can simulate initial or Tiis the projector on the Bell stai@*), and similarly for the other

nal two-body correlations in the above schemes by perfayminprojectors. See Refd][4.112]. Determination of optimalieal ofc
anideal (generalized) Bell-state preparation (or measent)  andg is discussed in the text.
followed by aknownfaulty completely-positive (CP) quantum =
map acting on the entire systems involved. It should be notedf‘pi
that not every CP maps can be written as concatenation of tw ZB - Ii‘Pi’?i e X00, X1, X22, X583
other CP maps. In other words, there exist CP maps that ar j> R - 03, X1z
W i Al alw Pyt £ Pyt Py £ Py Xo1, X23
indivisible”, in the sense that, for such a m@p there do not 5

. . |<I>a>y Pq>+ ip\p*'r qripqﬂr X02,; X13
exist CP mapd; and7; such that7 = 7,7, where neither

tstate{ Bell-state measurement | output s, n




EM =M oe0EM givenby

i f
g(T)(p) = Z anngrsX;/)q/wsf X

mnpp’qq’rr’ss’
B_A_A_B__B

A A_A
Op Oq1 000, O PO, 05 0,0

B_A

' Ogly

where the parameten@%rs and x;f,)q,r,s, are known (from
calibration of the operational/systematic errors in thepar
ration and measurement devices). By defining,, s =
(—=1)Omo=1) (0 =10y +(0n0=1)0sr0=D0ns’  and Py,

H M A_B_A_B
VXV:ep /g.li//g/”/ Wmnp's' Xpars Xprq'r s p' g’ Tp g

B A_B_A
PO, 000040,

gm (P) =2 mn Xmn O Prmn 07

By construction, the parametexéi;m and Xz()f’)q’r’s’ are alla

priori known, as are the matricgs,,, which are functions of
x, x, and the initial statg. Therefore, in order to develop

3

where theA (x ", x {p®»}) matrix contains full informa-
tion about all faulty experimental conditions. Givext",
x", and the standard DCQD input sgi(}, one can cal-
culate theA matrix. The standard DCQD experimental data
(analysis) will also determing¢(™). Now, if the A matrix

is invertible, from Eq.[{(IL) one can obtaig by inversion:
Ix) = A |x7). The invertibility of theA matrix, namely
det A # 0, depends on the input statés” } and the noise
operationsy” and x(". It may happen that thA matrix
becomes ill-conditioned [22] for a specific set of input etat
(for some given noise operation$’ andx (). In such cases,
even small errors (whether operational, stochastic, onaeu
off) in estimation ofx (" can be amplified dramatically after
multiplication by A—!. This in turn may render the estimation
of x (the sought-for unknown maf)) completely unreliable.
To minimize the statistical errors, the input states shdngd
chosen such thalet A is as far from zero as possible. There-
fore, the optimal input state{sogpt} [optimal in the sense of

minimizing statistical errors] for give) andx(") are ob-

a generalized DCQD scheme for the systems with faulty Belltained via maximizinglet A. A similar faithfulnessmeasure
state preparation (BSP) and measurement (BSM), we need s already been used in Refs. 23]. In Appefdix B, we

do it for a set of modified (input) states rather than a purejerive the optimal input states for the case of the ideal DCQD
Bell-state type input. Expanding,,, in the Bell basis yields  scheme.

~ _ kk' pkk’
pmn - Zkk’ /\mnP )

where \¥b' = Tr[PFK' 51 PR = | BF) <B’“/‘, and
|B%) for k = 0,1,2,3 corresponds to the Bell-stat¢s ™),
|T+), W), and|®~), respectively, wheréd*) = (|00) +
111))/v2, [&%) = (|01) + |10))/v/2. (Henceforth through-
out this manuscript, superscripts refer to the Bell-stasis
and subscripts refer to the Pauli operator basis.)méﬁ are
known functions ofv,,..,7s, xP', xV', andp. Therefore, the
overall output state can be rewritten as follows:

I11. PROCESSESTIMATION WITH SPECIFIC NOISY

DEVICES

In the following we describe several examples which de-
scribe relevant physical noise models.

em (p) = Zkk’mn /\ffr;anUéPkklUf-

We now apply the standard DCQD data analysis to esti-
mate the matrix elements of(™ (representing(™). After
performinga BSM, i.e., measurifg>’/ }3_ on this state, we
obtain the Bell-statéB’) with probability

A. Depolarizing channels: Correlated noise

An important and practically relevant example is the situ-
ation in which€® and£® both are two-qubit (hence corre-
lated) depolarizing channed?! [24,[25]

Te[PIED (0)] = 3 e A o Xy

P ] —¢ ,

: / y ’ . (&) P2 (©)
whereA,(j,j,ymn = Ak Ty[PIi g PR 541, Although this ex- P 11+ep™,
pression can be made more compact by using Pauli identities, pll B
the current form is convenient for our purposes. P15 1e1+e%,

A similar set of equations for the standard DCQD inputs
{pM}3_, can also be written. We represent all of these equa-
tions in a compact vector form as wheree ande’ could be independent of each other or corre-
lated (e.g.e = ¢’). These errors result in the following noisy
Ix™M) = Alx), data processing of the measurement results of DCQD:

(1)

(—¢)

Tr[E(p™) P — %S‘E”Tr[g(n) ® 1+ = e @ 1PIT] + E(lT_E/)Tr[S(p(i))] + e’ Tr[E(pD) PP]. (2)



For the Hamiltonian identification tasUZEZ?&f,(p) = B. Depolarizing channels: Uncorrelated noise
e~ Ht petHt (which is unital:£(1) = 1, and trace-preserving:
Tr[€(p)] = 1), we obtain We assume that the input states and our measurements are

diluted by depolarizing channels [28] 29] actiseparatelyon
the principal and ancilla qubits, i.6D @ D, whereD acts on

This relation provides a simple connection between thel ides? 98N€ral single-qubit stageas follows:D. (p) = FEl+ep,

and the noisy data processing rules. Another feature of3jq. ( O equivalently:D_(p) = >>7_, p;o;po;, wherepy = (1 +

is that it is valid irrespective of the values ofande’ (# 0).  3¢)/4 andp:y = p2 = ps = (1 — ¢€)/4, and positivity and
This implies that, whether ande’ are in the range which complete-positivity oD, require—1/3 <e < 1 [30].

makes the noisy preparation/BSM separable or [ndt[[28, 29], As a special case we specialize on the characterization of
the simplicity and applicability of (the modified) DCQD re- the diagonal elementg,. This is particularly important in
main intact. In other words, entanglement is not an impezati Hamiltonian identification tasks [26.127]. It can be easégs

TrE(PD)PI) — e Tr[E(pD)PIT] + (1 —ec’) /4. (3)

in the DCQD algorithm. that for Bell-states”** we obtain
A generalization of this noise model is the case in which the 9
preparations are modified based on a generalized two-qubit plk P=EDe 1-¢ 1® 14+ 2Phk,
depolarizing channels [24]: 4
S ] — Thus, to estimateg ., the necessary data processing is mod-
PP 21 g 14 U U, ified as in Egs.[([2) and13) by replacings’ — (s¢’)? and
4 i — 0 (recall thatp(® = |®+)(®*|). Here we have as-

in which U is an already known two-qubit unitary operator. Sumed that the input (measurement) depolarizing parameter

To simplify the following discussion we assume that BSMsis ¢ (¢'). This result implies that to estimate the diagonal el-
are noiselesse() = I). Finding the explicit form ofy(? is ~ ementsy,, whether under correlated noise or uncorrelated

straightforward. We use the form noise, the DCQD scheme is robust and classical data process-
ing is modified in a simple fashion. This has immediate appli-
b= %(1@) 14 Z/?n o TmnCm @ 0), cations to the task of Hamiltonian identification/[26].

whereY”" denotes the constrained summation in which the ) o
case(m,n) = (0,0) has been excluded. Using the identity C. Generalized depolarizing channels
OLO0) = (—1)1_5klal, we have: % Zib:o 0o @ Oppo, @

oy = p+ %1 @1, or equivalently222b20 PabTa ® TbpTa ® Here, we assume that the input states and/or measurements

are diluted such that they effectively lead to (known) Bell-

o, = 1 ® 1, wherep,, = 1/3 except forppy = —1. In . X .
addition, we expand’ in the {o,, ® 0,,}%. _, basis:U = diagonal input states and/or Bell-diagonal measurements.

> mn GmnOm @ 0y, Altogether, these relations yield Thus we obtain

- 1—¢ pt?) =L Z?’:O eiwpt),
DE(p) = 4 menom @ TnpOm & On jj By 53 5
— P13 g PT
+e Z Umnlm'n Om & OppOm! & O This noise results in the following noisy data processinief
mn,m’n’ measurement results of DCQD:
Hence, we obtainXmn = pnn(l — €)/4 + elama|* (the TrE(p D) PIT) — 3, eiive, TIE(P))PIT]. (6)

diagonal elements) arp@f'n)nm,n, = EAmnlmqp fOr (m,n) #
(m/,n’) (the off-diagonal elements). In a compact form, the
effect of this noise channel can be expressed as follows:

That s, every measurement result of the new setting is aline
combination of the ideal results. If we define the vec¢tor=
(pij)", wherep,; = Tr[€(p) Pi7], namely

TrE(p™) PH] —

T
1-e)(1—¢) &1 —e) p) = (TrEPO) POLTIE(PO) P, .. TrE(®) PH])
—— I TrEM) @ 1] + ——=Tr[€(1) ® 1PY] _ _

16 / 4 and the matrixA;; ;o = €€, then [8) can be written as
. e(1 ; £ )Tr[g(Up(i)UT)] e TrE(UpOUTyPid). (ay the following linear matrix transformation (see Appendix A
. L y . Ip) — Alp). (7
Under trace-preserving and unitality conditions, the faeth
processing is thus modified as follows: If we arrange the output elements as in Table I, we will have
THE(p ™) PH] — eeTHEWU P UT)PH] + (1 — ') /4. (5) p) = Clp), (8)

Although this is not as simple as Ef] (3), it yet retains a conwhere C is the (constant) coefficient matrix, heng) —
siderable simplicity. AC1ip).
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IV. SUMMARY tum systems with certain controllable classical correlai

of their subsystems. Therefore, our proposed method may

We have provided a scheme for utilizing auxiliary quantumhave near-term applications to a variety of realistic quamt
correlations to perform process estimation tasks withtyaul Systems/devices with the current state-of-technologsh &1
guantum operations. We have demonstrated our approadfPped ions, liquid-state NMR, optical lattices, and aegtad
via generalizing the ideal scheme of Direct Characteozati Pairs of photons.
of Quantum Dynamics (DCQD) where the required prepara- We thank Natural Sciences and Engineering Research
tions and measurements could be noisy. It has been showtouncil of Canada (NSERC), Faculty of Arts and Sciences
that when the systematic faulty operations are of the form obf Harvard University, Army Research Office (ARO) [project
depolarizing channels, the overhead data processingrig fai W911NF-07-1-0304], Mathematics of Information Technol-
simple. Moreover, these examples have revealed that for thegy and Complex Systems (MITACS), Pacific Institute for
DCQD scheme, entanglement is secondary. This, in turnyiathemaical Sciences (PIMS), and the USC Center for Quan-
broadens the range of applicability of our scheme to quantum Information Science and Technology for funding.

APPENDIX A: EXPLICIT FORM OF EQ. (8

Tablel suggests that if, instead of the conventional BSMsgansider the expression

Tr[POOE(P(O))] Tr[poog(p(o))]
T[PUE(p®)] T[PUE(p )]
Tr[ng(P(o))] Tr[P225(p(°))]
Tr[PSSE(p(O))] 1 1 Tr[P?’SE(p(O))]
TP £ (o) +Te[PP3E (1)) 1 TH[PPg (o))
Te[PIE(p )] +Tr[ P22 (p(V)] b TP (o))
Te[POO€(p)]—Tr[P33E(p™M)] bt Te[P22€(pM)]
TT[P(I);?:(P(;))]—TF[PTTS(P(;))] 1-1 - Tr[Pzzg(P(;))] 7 (A1)
Te[PYE(p)|+Tr [P E(p?)] 11 Tr[PE(p™)]
Tr[P22E(p))4+Tr[P32E(pP))] 1-1 T[PE(p?)]
Te[PO8 (o) —Ta[ P £ (p)] o Te[P22£ (p?)]
Tr[PPE(p'®))]~Tx[P*2E ()] 1 Tr[P33E(p2)]
TP (o) 4 TH[P?2E ()] P | miee)
TP E(p®) |+ Te[PP2E ()] Tr[P1E(p®)]
TT[PODS(P(g))]_Tr[Pzzg(P(a))] TF[P225(p(3))]
Tr[Psag(P(g))]_Tr[Png(P(a))] Tr[PSSE(p(3>)]

the results of the measurements can be related to theelements in a more straightforward fashion. Here, the eonst
coefficient matrix C) relates the results of the new BSMs) to those of the conventional BSMp)

APPENDIX B: OPTIMAL INPUT STATESFOR THE IDEAL (NOISELESS) DCQD

Here, we find the optimal input states for the ideal DCQD. Teaiiis to choose the input states such that the (linear)siorer
on the experimental data (to read ggimatrix elements) can be performed reliably. That is, thd gbauld be to make the
coefficient matrix as far from singular matrices as possibaximizing the determinant of this matrix is a sufficienndation
to guarantee its reliable invertibility, hence in turn, mial error propagation.

The data obtained from the measurements (BSMs) af&(F”) ) P77], where{p(")} corresponds to the first column of Tafle |,
respectively, foi = 0,1, 2, 3. We parameterize the input statesdy= cos § and3 = €' sin 6 (¢ # km, k € Z). Using relation



FIG. 2: The value of det A| vs @ and . Here, the coefficient matriA (60, ¢) relates the experimental outcomes to the unknown elements
of the superoperatory™) = A|x). The input states for the standard DCQD, as defined in Takéegl, |BL) = a|00) + B[11), are
parameterized as = cosf and = e?sinf (p # kn, k € Z). The optimal input states are associated to those paresrferewhich

| det A| has its maximal value 1, leading to a minimal statisticaberr

(1), one can express E@l (1), for the standard DCQD [4], edatiowing:

Te[PE(p™M))
Te[PE(p™M)]
Te[P22E(p )] 10000 0 0 0 000 0 0 000
T[PE (0 )] 00000 00 0 001 0 0 000} /X
01
Te[POOE(p)]+Te[PPE(p?)) 00000 0O O 000 0 0 00 1 Xo2
i) |88 s 8 08 8 g ne b s ey |
Tr[PO°€(pP)]—Tr[P33E(p)] 2 0 0dy 0O 0O O O O 0O O —iy 0 0 —=z X11
Te[PME(p)]—Tr[ P22 (p(2)] 000O0O0UO0O 2z y 0 0 y—20 0 00 0 e
004/ (3) 1ar (@) =| 1200 2 1 0 0 000 0 0 0200 e
Te[PTE(p'))]4+Tx[PE(p™)] 00000 0 O 0 0 01—z 0 0 iz 1 X1
A B IR e B I A A IR
000/ (3)\]_ 11 (3) z oy Yy —z 23
Te[P7"E ()] =Tr[P " E(p™)] 00000 1 0 -0 00 0 0 iz 0 1 X30
Tr[P33E(p3)])—Te[P2E(p®))] 10-20 0 0 0 0 —z 01 0 0 0 0 O e
T\r[POOS(p(Al))]+Tr[P22g(p(4))] 0 0 0 0O 0 —z 0 —y 0 0 0 0 0 —y 0 =z X33
g (@) 330 ,(4) —z 0 3y 0 O 0 O 0 —wy 0 2z O 0O 0 0 O
Te[PE(p")]+Te [P E(p'™))]
Te[PYOE(p)]=Tr[ P2 (p™)]
Te[PFE(pM)]=Tr[PE(p™M)]

where in the coefficient matriA (6, ¢) we haver = cos 26, y = sin 20 sin ¢, andz = sin 26 cos ¢. The determinant of this
matrix is obtained as

| det A| = sin® 46 sin® ¢,

which attains its maximum valueat (6 = 7/8 + kv /4, = /2 + k'w), Vk, k' € Z — Fig.[d. Therefore, the optimal input
states{p(?)} for the standard DCQD are as in Tafle | in whijclandv are either of the pairs calculated from the above maximal
set ofg andy. A simple calculation shows that the amount of entanglerfextctly speaking, concurrencel[31]) of the optimal
non-maximally entangled input stateslis,/2 (independent o).
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