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Non-Markovian quantum jumps in excitonic energy transfer
Patrick Rebentrost,a� Rupak Chakraborty, and Alán Aspuru-Guzikb�

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St.,
Cambridge, Massachusetts 02138, USA

�Received 13 August 2009; accepted 19 October 2009; published online 9 November 2009�

We utilize the novel non-Markovian quantum jump �NMQJ� approach to stochastically simulate
exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and
time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature
of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian
population beatings for a dimer system at room temperature. We show that strong exciton-phonon
coupling to low frequency modes can considerably modify transport properties. We observe
increased exciton transport, which can be seen as an extension of recent environment-assisted
quantum transport concepts to the non-Markovian regime. Within the NMQJ method, the Fenna–
Matthew–Olson protein is investigated as a prototype for larger photosynthetic complexes.
© 2009 American Institute of Physics. �doi:10.1063/1.3259838�

I. INTRODUCTION

The initial step in photosynthesis is the excitonic trans-
port of the energy captured from photons to a reaction
center.1 In this process, highly efficient transport occurs be-
tween interacting chlorophyll molecules embedded in a sol-
vent and/or a protein environment.2 The exciton transfer dy-
namics has been studied utilizing the Förster theory in the
limit of weak intermolecular coupling3 or Redfield master
equations in the limit of weak exciton-phonon coupling.4 The
latter approach describes the transport as dissipative dynam-
ics for the reduced excitonic density matrix. Master equa-
tions are developed starting from projector operator tech-
niques that separate relevant �system� from less relevant
�phonon� degrees of freedom. Formally exact dynamics for
the system is described by the Nakajima–Zwanzig equation
with time convolution5,6 and the time-convolutionless �TCL�
equations.7–11 The first is equivalent to the chronological or-
dering prescription while the second corresponds to a partial
ordering prescription of the time ordering in a system-bath
cumulant expansion.7,12,13 Under certain conditions, the con-
volution kernel can be transformed into the TCL kernel by
including the appropriate backward propagation for the den-
sity matrix.10,14 The time-dependent Redfield equation is de-
rived from a second-order approximation in the system-bath
interaction Hamiltonian.14 Further imposing the Markov ap-
proximation leads to the standard time-independent Redfield
equation. The dynamics of the populations of the density
matrix and that of the coherences is separated when the secu-
lar approximation is employed, in which the master equation
can be cast into a Lindblad form. Recently, Palmieri et al.15

developed a prescription for reintroducing the coupling of
populations and coherences with suitably defined Lindblad
operators.

Non-Markovian �NM� effects can be taken into account
by the TCL approach. Other frequently used methods explic-
itly include strongly coupled modes or environmental two-
level systems into the system dynamics.16,17 The Hilbert
space size, and thus numerical effort, increases simulta-
neously. Recently, complex exciton-phonon couplings were
incorporated within a stochastic Schrödinger equation
approach.18 A greater range of validity than the standard
Redfield method can be achieved with the small polaron
transformation.11,19 Kubo and Tanimura and co-workers20–22

developed a hierarchical treatment where auxiliary systems
describe higher order system-bath interactions. While the hi-
erarchical treatment is formally exact for Gaussian fluctua-
tions, the infinite set of equations is truncated for numerical
propagation. Extensions specifically for low temperatures
were studied in Ref. 23 and with a filtering method in Refs.
24 and 25. A similar hierarchical equation of motion ap-
proach was recently applied to the Fenna–Matthews–Olson
�FMO� protein complex.26 In this treatment, the important
process of molecular reorganization after photoexcitation is
incorporated and is shown to lead to rather long-lived quan-
tum coherence, similar to the experiment.27

A Markovian master equation in Lindblad form can be
simulated by means of the Monte Carlo wave function
method �MCWF�.28 This numerical technique relies on the
property that density matrix evolution is equivalent to an
averaging of wave function trajectories, each of which is
interrupted by stochastic, discontinuous quantum jumps. In
this work, we employ the non-Markovian quantum jump
�NMQJ� approach, recently developed by Piilo et al.29,30

This method is a generalization of the MCWF to the case of
NM dynamics derived from a TCL approach. The TCL ap-
proach can lead to time-dependent, oscillatory decoherence
rates that have negative regions, a signature of NM behavior.
These negative rates can lead to a reversal of decoherence.

In comparison with the explicit numerical integration of
the master equation, the NMQJ approach has interesting fea-
tures in the context of exciton transfer in chromophoric net-
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works. First, the NMQJ approach is, similar to the MCWF,
based on the propagation of wave functions and thus, scales
considerably better with the system size than approaches in
the Liouville space. It is therefore especially suitable for
simulating large chromophoric networks of photosynthetic
antenna systems. Second, positivity violation �as, e.g., ob-
served in Ref. 10� can be efficiently detected during the
simulation by a simple criterion for the negative jump
probabilities.31 Third, the trajectory picture allows for new
insights into exciton dynamics. Quantum jumps related to
negative transition rates can restore coherence and thus can
provide an additional theoretical perspective on long-lived
quantum coherence found in photosynthetic systems, such as
the FMO complex27 and the reaction center of purple
bacteria.32 Here, we apply the NMQJ approach to dimer sys-
tems and the FMO complex. We observe population beatings
arising from recurrence effects of the NM environment. We
also find that in the NM regime transport can be enhanced
compared to purely Markovian dynamics and thereby pro-
vide an extension to the recent environment-assisted quan-
tum transport �ENAQT� concept.33–35 These effects are pro-
nounced in situations when the main phonon-mode
frequencies are much smaller than �i.e., “off-resonant” to� a
particular system transition frequency.

In Sec. II, we develop a TCL master equation for the
dynamics of a single excitation, leading to time-dependent
rates. In Sec. III, we discuss the spectral density and time-
dependent rates in more detail and explain the physical situ-
ation where NM effects are considerable. In Sec. IV, we in-
troduce the NMQJ method in the context of excitonic energy
transfer. In Secs. V–VII, we analyze dimer systems and the
FMO complex.

II. MASTER EQUATION

The transport dynamics of a single excitation is de-
scribed by a master equation for the density matrix that in-
cludes coherent evolution, relaxation, and dephasing. In this
work, we are mainly interested in the effect of slow fluctua-
tions and the memory of the bath on the excitonic energy
transport dynamics. We utilize a TCL master equation to sec-
ond order in the exciton-phonon coupling. We employ the
secular approximation and focus on NM decoherence rates.
The removal of the secular approximation requires modifica-
tions to the NMQJ approach and is left for future work. The
validity and limitation of the Redfield approach with respect
to parameters such as environmental coupling and tempera-
ture and with respect to the neglect of fundamental pro-
cesses, such as the molecular reorganization, has been dis-
cussed in detail in Refs. 4, 36, and 37. The complete
Hamiltonian for an interacting N-chromophoric system in the
single exciton manifold and including the phonon part is
given by H=HS+HSB+HB. The system part is in tight-
binding form

HS = �
m=1

N

�m�m��m� + �
n�m

N

Vmn��m��n� + �n��m�� , �1�

where the Hilbert space basis states �m� denote the presence
of an excitation at the mth chromophore and �m are relative

site energies with respect to the chromophore with the lowest
absorption energy. The Vmn are the interchromophoric cou-
plings. The exciton basis �M�=�mcm�M��m� is the eigenbasis
of Hamiltonian �1�, HS�M�=EM�M�. The exciton-phonon
Hamiltonian is dominated by site energy fluctuations,

HSB = �
m

Am � Bm, �2�

with the system part Am= �m��m� and the bath part Bm

= ��i��i�i�bi+bi
†��m. Each site is separately interacting with

a set of phonon modes indicated by the subindex m of the
bath part. The dimensionless coefficients �i describe the
coupling strength to each phonon mode. The phonon
Hamiltonian is HB=�i,m���ibi

†bi�m, where the sum is over all
phonon modes �at each site� described by the bosonic opera-
tors bi and frequencies �i. For this work, we assume that the
chromophores are coupled independently to their respective
baths. Recent studies include spatial correlations into the
exciton dynamics.38–40

The second-order TCL master equation for the reduced
system density matrix in the interaction picture, ��t�, is given
by14

d

dt
��t� =

− 1

�2 	
0

t

dt1 trB
�HSB�t�,�HSB�t1�,��t� � �B��� . �3�

The characteristic double commutator arises from a second-
order perturbation treatment of the interaction picture
system-bath Hamiltonian HSB�t�. Note that it is assumed that
the effect of the system on the bath is small such that the
total system approximately factorizes for all times. Mul-
tiphonon processes, arising from higher order commutators,
are not taken into account. An additional approximation in
the standard Redfield theory is that the phonon bath is al-
ways in equilibrium, which neglects molecular reorganiza-
tion effects. Next, we introduce the operators Am���
=��M−�N=��cm

� �M�cm�N��M��N�, which describe the effect of
the system-bath Hamiltonian in the eigenbasis of the system
Hamiltonian, i.e., Am=��Am���, where the sum is over all
transitions in the single exciton manifold.14 This leads to the
master equation of the form

d

dt
��t� = −

1

�2�
m

�
�,��

�Am���,�Am����,��t���ei��+���t

�	
0

t

dt1e−i��t1Sm�t1�

+
1

�2�
m

�
�,��

�Am���,
Am����,��t���ei��+���t

�	
0

t

dt1e−i��t1
i

2
�m�t1� , �4�

with the symmetrized correlation function

Sm�t� = 1
2 trB

Bm�t�,Bm�0���B� �5�

and the associated response function
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�m�t� = − i trB
�Bm�t�,Bm�0���B� . �6�

The quantities in Eqs. �5� and �6� are related to the real and
imaginary parts of the bath correlator, i.e., Cm�t�
=trB
Bm�t�Bm�0��B�=Sm�t�+ i�m�t� /2. The generalized time-
dependent Redfield equation �4� avoids the Markov approxi-
mation in the sense that the upper integration limit goes to t
instead of 	. One also observes the usual oscillating terms
that mix population and coherences. Next, we perform the
secular approximation, essentially averaging over these fast
oscillating terms. Here, we would like to study the effect of
the Markovian versus NM decoherence rates and formulate
the master equation such that the NMQJ method can be
straightforwardly applied. The secular approximation is jus-
tified in the slow decoherence regime when ��−���−1
�D

for all transition frequency differences, where �D is a general
time scale of decoherence. Finally, we assume that every
chromophore is embedded in an identical phonon environ-
ment, thus the m subscript for the correlator and the response
function can be dropped.33 One arrives at the master equation
in the interaction picture

d

dt
��t� = �

m�

iL�t,���Am
† ���Am���,��t�� + �

m�

��t,��

��Am�����t�Am
† ��� −

1

2

Am

† ���Am���,��t�� ,�7�

with the time-dependent Lamb shift

L�t,�� = Im�	
0

t

dt1e−i�t1C�t1�� �8�

and the time-dependent rates

��t,�� = 2 Re�	
0

t

dt1e−i�t1C�t1�� . �9�

A transformation into the Schrödinger picture can be readily
performed, resulting in the usual system Hamiltonian com-
mutator term of the master equation,14

d

dt
��t� = −

i

�
�HS + HLS�t�,��t�� + �

m�

��t,��

��Am�����t�Am
† ��� −

1

2

Am

† ���Am���,��t�� .

�10�

The Hamiltonian HLS�t�=�m�L�t ,��Am
† ���Am��� leads to a

Lamb-type renormalization of the energy levels. In the
present work, we do not consider this term since we do not
expect a qualitatively new contribution to the exciton
dynamics.37,39

III. SPECTRAL DENSITY AND TIME-DEPENDENT
RATES

The main result for a Redfield master equation without a
Markov approximation is the time dependence of the rates.
The decoherence rates depend on the phonon coupling
strengths �i. The spectral density �units of frequency� de-
scribes the coupling strength at a particular frequency

J��� = �
i

�i
2�i

2�� − �i� . �11�

Assuming a continuous distribution of modes the spectral
density can be modeled with various functional forms.
In molecular energy transfer often an Ohmic spectral
density with exponential or Drude–Lorentz cutoff is
employed.26,33,41,42 In Ref. 13 NM phonon sidebands in fluo-
rescence spectra of the B777 complex were reproduced with
a super-Ohmic spectral density. In this paper, we assume an
Ohmic spectral density with exponential cutoff

J��� =
�

��c
� exp�−

�

�c
 . �12�

The relevant quantities are the cutoff �c and the reorganiza-
tion energy �. The cutoff determines the position of the peak
of the spectral density and the reorganization energy is given
by �=��d��J��� /��. In Fig. 1 �upper panel� we show the
spectral density for a particular choice of parameters. We
choose �=30 cm−1, which is typical for chromophores in
photosynthetic systems,22 and �c=30 cm−1 which corre-
sponds to relatively slow phonon modes. Note that typical
transition frequencies in the single exciton manifold such as
��200 cm−1 are located at the tail of the spectral density.
The resulting Markovian relaxation rates are small. However,
the strongly coupled, off-resonant modes at around 30 cm−1

can lead to considerable NM effects of the decoherence rates.
For any spectral density and for the bosonic bath, the

time-dependent decoherence rate is derived from Eq. �9�,

0 100 200 300 4000

5

10

15

20

25

Mode frequency [1/cm]

S
pe
ct
ra
ld
en
si
ty
[1
/c
m
]

Transition
frequency

0 0.5 10

500

1000

1500

Time [ps]
0 0.5 1−100

0

100

200

Time [ps]

R
at
e
[1
/c
m
]

0.75 1
−5
0
5

DephasingRelaxation

FIG. 1. Spectral density and resulting time-dependent decoherence rates
from Eqs. �13� and �14�. The upper panel shows the Ohmic spectral density
with exponential cutoff for the parameters �=30 cm−1 and �c=30 cm−1. In
the physical situation studied in the present work, the main strongly coupled
modes are off-resonant to a transition frequency �200 cm−1 in this figure�.
This leads to rich behavior of the corresponding rates at relevant time scales
of around 1 ps �T=300 K�. The relaxation rates �blue in the lower left
panel� oscillate, turn negative, and converge to their Markovian limit �red�;
the inset shows a magnification at times just before 1 ps. The dephasing rate
�blue in the lower right panel� rises from zero and converges to the
Markovian limit �red�.
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���,t� = 2	
0

	

d�̃J��̃��n��̃�
sin��� + �̃�t�

� + �̃

+ �n��̃� + 1�
sin��� − �̃�t�

� − �̃
� . �13�

Here, n��� is the bosonic distribution function. In the
Markovian limit �t→	�, the spectral density is sampled only
at the frequency �, which can be seen from the limiting
behavior of the terms �1 / ����̃��sin�����̃�t�. For the
dephasing rate one obtains from Eq. �13� in the limit �→0

���t� = 2	
0

	

d�̃J��̃�coth� ��

2kBT
 sin��̃t�

�̃
. �14�

In the Markovian limit, the dephasing rate becomes linearly
proportional to the temperature and the derivative of the
spectral density at zero frequency.14 In the NM case, a
greater part of the spectral density is taken into account. This
can lead to rich behavior of both relaxation and dephasing
rates. In Fig. 1 �lower panel�, we show the rates that follow
from the spectral density �12� and the above choice of pa-
rameters. The relaxation rates in the NM case oscillate
around the Markovian rates, have positive and negative re-
gions, and finally converge to the Markovian rate on a time
scale of 1 ps. The NM dephasing rate converges from below
the Markovian limit on a similar time scale. This transient
regime has been discussed in terms of slippage in the initial
conditions, e.g., in Ref. 43.

IV. NON-MARKOVIAN QUANTUM JUMPS

In this work, we perform a stochastic unraveling of the
master equation with the NMQJ approach established in
Refs. 29 and 30. The master equation �10� is precisely in the
form required for the NMQJ method. We give a brief sum-
mary of this technique. For every time t, one can separate the
set of jump generators Am��� into Am

+ ��� and Am
− ��� depend-

ing on the overall sign of the corresponding rate. That is for
all Am

+ ��� the rate is �+�� , t��0, while for all Am
− ��� the rate

is �−�� , t��0. In the presence of only positive channels, the
original MCWF method can be employed.28,29 The particular
structure of the jump generators Am��� �see Sec. II� leads to
a relatively straightforward description of the quantum me-
chanical ensemble. The density matrix at all time can be
written as

��t� =
N0�t�

N
��i�t����i�t�� + �

M

NM�t�
N

�M��M� . �15�

Here, ��i�t�� is the initial state with statistical weight
N0�t� /N. The exciton states �M� are as defined above and
have a statistical weight NM�t� /N. Initially, N0�0�=N and at
all times the numbers N0�t� and NM�t� conserve probability,
i.e., N0�t�+�MNM�t�=N. The time evolution consists of
propagation of ��i�t�� and stochastic changes in the weights
N0�t� and NM�t�. In general, one defines the effective
Hamiltonian

Heff = HS −
i�

2 �
m,�

��t,��Am
† ���Am��� , �16�

where the sum is over positive and negative channels. The
NMQJ method now describes the time evolution of the en-
semble ��t� as a wave function evolution of the ensemble
states with Heff interrupted by probabilistic, discontinuous
jumps corresponding to the jump operators of all channels.
Consider now a particular ensemble member ���t�� at time t
evolving for a small time step t. As in the MCWF, the
no-jump evolution is

���t + t�� =
�1 −

it

�
Heff���t��

��1 −
it

�
Heff���t��� . �17�

The positive jumps occur with probability Pm�
+ �t�

=t�+�� , t����t��Am
+†���Am

+ ������t�� and an ensemble mem-
ber jumps according to

���t�� → ����t + t�� =
Am

+ ������t��
�Am

+ ������t���
. �18�

The negative jumps occur from the source state ���t�� to
target states ����t�� if the source ���t�� has the property that it
can be reached by a jump with Am

− ��� from the target state

���t�� =
Am

− �������t��
�Am

− �������t���
→ ����t + t�� . �19�

Note that a negative jump can “undo” positive jumps that
occurred earlier in the time evolution. The negative jump
probability depends on the target state ����t�� and is Pm�

− �t�
= �N��t� /N�t��t��−�� , t������t��Am

−†���Am
− �������t��, where

N��t� is the number of ensemble members in the target state
and N�t� are the number of ensemble members in the source
state. A Monte Carlo unraveling according to this prescrip-
tion is shown to be equivalent to master equation �10�, see
Ref. 29. NMQJs can explicitly lead to restored quantum co-
herence with this jump description that correctly handles
negative rates in the master equation.

We end this section with a note regarding positivity of
the density matrix. The master equation �10� with time-
dependent rates is not guaranteed to ensure positivity of the
density matrix. However, the NMQJ method yields a simple
criterion for detecting when positivity is about to be violated
based on the negative jump probability.31 The Pm�

− �t� is in-
versely proportional to the number of ensemble members in
the source state N�t�. The case when N�t� becomes zero and
the rate is negative at the same time is precisely when the
master equation would violate positivity. The interpretation
of this is that the environment tries to undo an event that
never happened. Thus, based on the singularity of the nega-
tive jump probability one can easily detect unphysical time
evolution in the algorithm. All results in this work originate
from physical time evolution.
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V. POPULATION BEATINGS IN A DIMER SYSTEM

In this section, we show that oscillatory NM decoher-
ence rates can lead to beatings of site populations that do not
occur in a Markovian treatment of the dynamics. The beat-
ings arise from the coupling to slow modes in the environ-
ment. We discuss a dimer system consisting of two interact-
ing chromophores in a structured phonon bath. The system
Hamiltonian in the single exciton manifold is

HS = �2�2��2� + V12��1��2� + �2��1�� . �20�

The eigenenergies are E2,1=�2 /2�1 /2��2
2+4V12

2 and the
transition frequency is ��21= �E2−E1�=��2

2+4V12
2 .

The respective eigenstates are �E1�=c1�1��1�+c2�1��2� and
�E2�=c1�2��1�+c2�2��2�, with c1�1�=−c2�2�=sin � and c1�2�
=c2�1�=cos � with the mixing angle tan 2�=2V12 /�2.
The jump generators for relaxation are A2���=−A1���
=1 /2 sin 2��E1��E2� and their transpose conjugates.
The jump generators for dephasing are A1�0�
=sin2 ��E1��E1�+cos2 ��E2��E2� and A2�0�=cos2 ��E1�
�E1�+sin2 ��E2��E2�.

For the simulations we take the excitonic Hamiltonian to
be of a particular form: V12=87 cm−1 and �2=120 cm−1.
This form is equal to the Hamiltonian of sites 1 and 2 sub-
system in the FMO complex given in Ref. 26. Nevertheless,
the effects presented here hold for a large variety of dimer

Hamiltonians. The initial state is localized at site 1, i.e.,
��0�= �1��1�. In Fig. 2, we show the time dependence of the
decoherence rates �left panels� and the time evolution of the
population and coherence elements of the density matrix in
the site basis, i.e., �mn�t�= �m���t��n�. We compare different
temperatures in the Markovian �middle panels� and NM de-
scriptions �right panels�. The spectral density parameters are
reorganization energy �=50 cm−1 and cutoff �c=50 cm−1.
The rates �left panels in Fig. 2� are similar as discussed in
Fig. 1. The relaxation rates are generally smaller than the
pure dephasing rate. The Markovian limit is reached on a
time scale on the order of 1 ps. Higher temperature leads to
larger oscillations of the decoherence rates. In the Markovian
case �middle panels in Fig. 2�, we observe that the popula-
tion and coherence oscillations die out very fast, especially at
high temperatures. This is explained by the linear depen-
dence of the dephasing rate on temperature.

In the NM case, the dynamics is considerably different.
At low temperatures the beatings are similar to the Markov-
ian case; decoherence rates are generally small and differ-
ences in NM versus Markovian are not pronounced. At in-
creasing temperature, the quantum mechanical beatings live
slightly longer in the NM case due to the smaller dephasing
rate at short times. At large temperatures, another type of
beating arises, which is due to the oscillatory relaxation
rates. It leads to beatings of the population matrix elements
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FIG. 2. Decoherence rates and time
evolution of the density matrix ele-
ments for a dimer system, comparing
Markovian and NM dynamics. The
left panels show dephasing �respective
upper panel� and relaxation rates �re-
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time. The time-dependent rates �blue�
converge to their respective Markov-
ian limits �red�. The time evolution of
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red, Im �12 cyan� is displayed in the
Markovian �middle panels� and NM
�right panels� cases for various tem-
peratures. At room temperature NM
population beatings are observed.
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and the real part of the coherence matrix element. These
beatings can be interpreted as recurrence of the NM environ-
ment; energy is emitted from the system into the environ-
ment during the positive regions of the decoherence rates and
reabsorbed in the same decoherence channel during the nega-
tive regions.

In this work, the interesting case is that of slow phonon
modes which have significantly smaller frequency than a par-
ticular single exciton transition. In this situation, NM effects
are strong, meaning substantial time intervals with negative
rates. To check the opposite limit, we have evaluated the rate
expression Eq. �13� with a single-Lorentzian spectral density
peaked at frequencies that are larger than the excitonic tran-
sition frequency. This Lorentzian spectral density models a
single broadened vibrational mode. This single mode leads to
decoherence rates that remain positive during the complete
time evolution. From these calculations, we can indeed con-
clude that within the second-order TCL master equation ap-
proach only slow, off-resonant phonon modes lead to NM
effects.

VI. TRANSPORT IN THE NON-MARKOVIAN REGIME

In this section, we focus on transport properties in the
NM regime. The general behavior of the exciton transport as
a function of different parameters, contributions of various
physical processes, and robustness of a chromophoric net-
work can be investigated by theoretical measures such as the
energy transfer efficiency and the transfer time.39,44 Trapping

sites model the reaction centers where charge separation and
energy storage occur in the photosynthetic system, neglect-
ing further chemical detail. In this paper, we utilize a simpler
measure to elucidate energy transport. We define the inte-
grated probability of a particular excitonic state up to a cer-
tain time �, which is the only free parameter. An explicit
introduction of trapping sites and additional free parameters
are not required. Formally, the measure is given by

P̄M =
1

�
	

0

�

dt�M���t��M� , �21�

where � is the total integration time and �M� is a particular
exciton state given by the problem at hand. For this measure
we choose an exciton state �M� and focus on relaxation dy-
namics in the exciton basis. For example, in the FMO com-
plex the exciton with the lowest energy, localized at sites 3
and 4, would be an appropriate choice.

We analyze the transport properties of master equation
�10� and the NMQJ unraveling and compare to the
Markovian regime. We choose the Hamiltonian parameters
in Eq. �20� as V12=50 cm−1 and �2=2V12. We assume that
the system is initially in the energetically higher eigenstate
�E2� and investigate relaxation to the lower lying eigenstate
�E1�. We quantify the transport by the integrated probability

of Eq. �21� using �E1�, i.e., P̄1. In Fig. 3, we show the de-
pendence of the transport on the essential parameters of the
spectral density �reorganization energy � and cutoff �c� and
the temperature. If not explored as variables, the default pa-
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FIG. 3. The averaged probability mea-

sure P̄1 as defined in Eq. �21� as a
function of the main decoherence pa-
rameters for a dimer system. Markov-
ian �green� and NM �blue� cases are
depicted for different temperatures and
the central parameters of the spectral
density �reorganization energy �, cut-
off �c�. Two integration times for the
measure, �=1 ps �left panels� and
�=4 ps �right panels�, are shown, the
effects being more pronounced for the
shorter time scale. The standard pa-
rameters are �c=30 cm−1, �
=30 cm−1, and room temperature T
=300 K.
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rameters are �=30 cm−1, �c=30 cm−1, and room tempera-
ture �T=300 K�. We investigate two integration times,
�=1 ps and �=4 ps. The results are more pronounced for
the shorter time. Shorter time scales are more relevant for
smaller photosynthetic complexes such as the FMO
complex.26 As a result, we observe that transport can be
enhanced in the NM situation where the rates are gives by
Eq. �13�. This study can be seen as an extension of ENAQT
concepts to the NM regime.

In the upper panels of Fig. 3, the dependence of P̄1 as a
function of the reorganization energy � is investigated. Re-
laxation and dephasing rates are scaled linearly with �. In

general, the probability P̄1 increases as a function of the
reorganization energy. When relaxation rates are larger,
thermal equilibration of the exciton populations is faster. At

�=30 cm−1 and �=1 ps the NM probability is P̄1=0.44

while the Markovian probability is P̄1=0.27, a substantial
difference for this rather small system. The improvement can
be rationalized by the fact that the initially large NM relax-
ation rates lead to fast equilibration. The negative regions of
the rate partially undo the positive region but the integrated
population of the target exciton is overall larger than in the
Markovian case. For reorganization energies beyond
�90 cm−1 we observe positivity-violating time evolution
identified with the criterion discussed earlier.31

The middle panels of Fig. 3 show the dependence of P̄1

on the temperature. In the present case of energy transfer
from a high to low exciton state, temperature can have an
assisting effect for short times and for both Markovian and
NM treatments.33 For example, see the graphs for �=1 ps.
Increased thermal population of the phonon modes can lead
to increased stimulated emission of exciton energy into the
phonon bath and thus transports toward the lower exciton
state. This effect becomes weaker for longer times, see the

graphs for �=4 ps. Absorption of energy from the phonon
bath comes into play, which transports the excitation from
the lower exciton state back to the higher one. The tempera-
ture is more significant in the NM regime since the Bose
functions in the rate integral are sampled at all frequencies
instead of only at �21.

In the lower panels of Fig. 3, the averaged probability P̄1

is shown as a function of the cutoff �c of the spectral density.
For both NM and Markovian cases, a larger cutoff and thus a
stronger coupling of modes that are resonant with the transi-
tion frequency leads to increased transport. For large cutoffs
�c�60 cm−1, the NM difference in terms of transport van-
ishes; resonant modes dominate the relaxation dynamics. For
very small cutoffs below 1 cm−1, we again observe positiv-
ity violation. The interesting intermediate regime occurs
in the presence of only slow modes. Here, the NM
dynamics shows substantially larger transfer probabilities.

For �=1 ps and �c=20 cm−1, we obtain P̄1=0.31 in the NM

case and P̄1=0.06 in the Markovian case. This improvement
is due to sampling of a broader range of the spectral density
in Eq. �13�. The physical interpretation is that the NM
dynamics allows the system to temporarily access energy
nonconserving phonons for quantum jumps that would be
inaccessible otherwise.

VII. FENNA–MATTHEWS–OLSON COMPLEX

In this section, we investigate the FMO complex. The
FMO complex acts as an energy transfer wire in green sulfur
bacteria Chlorobium tepidum.2 It is the subject of recent
experimental27 and theoretical studies.26,33,38,45 The TCL
master equation �10� is derived for the seven-site FMO sub-
unit and simulated with the NMQJ method. We use the
Hamiltonian of Ref. 26 and the spectral density �12� with
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FIG. 4. Population of sites in the FMO
complex for Markovian �dashed� and
NM �solid� cases. Sites that are close
to the chlorophyll antenna are taken to
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=35 cm−1, and two temperatures
T=77 K and T=300 K.
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�=35 cm−1 and �c=150 cm−1.33 The decoherence rates for
the 42 relaxation channels �absorption and emission� and the
7 dephasing channels are evaluated. The rates oscillate and
some have negative regions. The initial states are chosen to
be localized at site 1 or 6, the sites that are close to the
chlorophyll antenna complex. As a result, we find that the
dynamics is not substantially affected by the time-dependent
rates, see Fig. 4. Quantum beatings are slightly longer lived
for both temperatures 77 and 300 K and both initial states.
This is because the NM dephasing rates converge from be-
low to the Markovian limit similar to Fig. 1 �bottom right
panel�. The main relaxation rates stay positive and oscillate
around their Markovian values. The spectral density is rather
broad, covering all transition frequencies, cf. Fig. 2 of Ref.
38, such that the effects described in Secs. III, V, and VI turn
out to be not dominant. The Markovian approximation alone
in the presence of the other approximations such as Born and
secular does not have a substantial effect. Recently, Ishizaki
and Fleming26 utilized the hierarchical equation of motion
approach to explain long-lived coherences in the FMO com-
plex. Since Born and secular approximations are avoided for
Gaussian fluctuations, this approach has a larger range of
validity than the Redfield model, especially at large tempera-
tures, and incorporates molecular reorganization effects.

VIII. CONCLUSION

In conclusion, we have applied the NMQJ method to
excitonic energy transfer. The NM decoherence rates that
result from a TCL treatment of the master equation are os-
cillatory and negative for parameter regimes and time scales
that are relevant to the problem. In the present work, NM
effects are large when a system is strongly coupled to slow
off-resonant phonon modes of the environment. These slow
modes can lead to population beatings at room temperature,
which are a signature of bath recurrence effects. Addition-
ally, our computations show that Markovian versus NM dy-
namics can crucially affect transport dynamics. Quantum
transport can be enhanced over strictly Markovian dynamics
due to a sampling of broader regions of the spectral density.
We thus have provided a NM extension to recent ENAQT
concepts. For example, a system with a transition of around
140 cm−1 shows considerable NM improvement of transport
in the presence of strong modes at around 30 cm−1.

Recently, Jang et al.11 developed a novel theory of co-
herent resonance energy transfer. A small polaron transfor-
mation is applied before the second-order TCL expansion
that leads to time-dependent decoherence rates. Nonequilib-
rium reorganization effects are taken into account by the
exciton-phonon dressed state description. This treatment can
lead to an increased range of validity with respect to the
exciton-phonon couplings and temperatures compared to the
standard Redfield approach. In this context, the NMQJ
method in its present form or with suitable extensions could
prove especially powerful to efficiently simulate larger
donor-acceptor systems and to correctly incorporate negative
decoherence rates in a quantum jump description.
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