70 research outputs found

    Lattice dynamics of Sb2Te3 at high pressures

    Full text link
    We report an experimental and theoretical lattice dynamics study of antimony telluride (Sb 2Te 3) up to 26 GPa together with a theoretical study of its structural stability under pressure. Raman-active modes of the low-pressure rhombohedral (R-3m) phase were observed up to 7.7 GPa. Changes of the frequencies and linewidths were observed around 3.5 GPa where an electronic topological transition was previously found. Raman-mode changes evidence phase transitions at 7.7, 14.5, and 25GPa. The frequencies and pressure coefficients of the new phases above 7.7 and 14.5 GPa agree with those calculated for the monoclinic C2/m and C2/c structures recently observed at high pressures in Bi 2Te 3 and also for the C2/m phase in the case of Bi 2Se 3 and Sb 2Te 3. Above 25 GPa no Raman-active modes are observed in Sb 2Te 3, similarly to the case of Bi 2Te 3 and Bi 2Se 3. Therefore, it is possible that the structure of Sb 2Te 3 above 25 GPa is the same disordered bcc phase already found in Bi 2Te 3 by x-ray diffraction studies. Upon pressure release, Sb 2Te 3 reverts back to the original rhombohedral phase after considerable hysteresis. Raman- and IR-mode symmetries, frequencies, and pressure coefficients in the different phases are reported and discussed. © 2011 American Physical Society.This work has been done under financial support from Spanish MICINN under Project Nos. MAT2010-21270-C04-03/04 and CSD-2007-00045 and supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501). E. P.-G. acknowledges the financial support of the Spanish MEC under a FPI fellowship. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster.Gomis Hilario, O.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Rodríguez-Hernández, P.; Pérez-González, E.; Muñoz, A.; Kucek, V.... (2011). Lattice dynamics of Sb2Te3 at high pressures. Physical Review B. 84:174305-1-174305-12. https://doi.org/10.1103/PhysRevB.84.174305S174305-1174305-1284Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012Harman, T. C. (2002). Quantum Dot Superlattice Thermoelectric Materials and Devices. Science, 297(5590), 2229-2232. doi:10.1126/science.1072886Chen, J., Sun, T., Sim, D., Peng, H., Wang, H., Fan, S., … Yan, Q. (2010). Sb2Te3Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity. Chemistry of Materials, 22(10), 3086-3092. doi:10.1021/cm9038297Yin, Y., Sone, H., & Hosaka, S. (2007). Characterization of nitrogen-doped Sb2Te3 films and their application to phase-change memory. Journal of Applied Physics, 102(6), 064503. doi:10.1063/1.2778737Kim, M. S., Cho, S. H., Hong, S. K., Roh, J. S., & Choi, D. J. (2008). Crystallization characteristics of nitrogen-doped Sb2Te3 films for PRAM application. Ceramics International, 34(4), 1043-1046. doi:10.1016/j.ceramint.2007.09.078Anderson, T. L., & Krause, H. B. (1974). Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−y Se y compounds. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1307-1310. doi:10.1107/s0567740874004729Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274Wang, G., & Cagin, T. (2007). Electronic structure of the thermoelectric materialsBi2Te3andSb2Te3from first-principles calculations. Physical Review B, 76(7). doi:10.1103/physrevb.76.075201Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034Badding, J. V., Meng, J. F., & Polvani, D. A. (1998). Pressure Tuning in the Search for New and Improved Solid State Materials. Chemistry of Materials, 10(10), 2889-2894. doi:10.1021/cm9802393Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., & Badding, J. V. (2001). Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb1.5Bi0.5Te3. Chemistry of Materials, 13(6), 2068-2071. doi:10.1021/cm000888qChandra Shekar, N. V., Polvani, D. A., Meng, J. F., & Badding, J. V. (2005). Improved thermoelectric properties due to electronic topological transition under high pressure. Physica B: Condensed Matter, 358(1-4), 14-18. doi:10.1016/j.physb.2004.12.020Ovsyannikov, S. V., Shchennikov, V. V., Vorontsov, G. V., Manakov, A. Y., Likhacheva, A. Y., & Kulbachinskii, V. A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 104(5), 053713. doi:10.1063/1.2973201Ovsyannikov, S. V., & Shchennikov, V. V. (2010). High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics†. Chemistry of Materials, 22(3), 635-647. doi:10.1021/cm902000xLi, C., Ruoff, A. L., & Spencer, C. W. (1961). Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 32(9), 1733-1735. doi:10.1063/1.1728426Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1980). Thermoelectric properties and phase transition in Sb2Te3 under hydrostatic pressure up to 9 GPa. Physica Status Solidi (a), 58(1), 37-40. doi:10.1002/pssa.2210580103Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1985). Kinetic Properties and Phase Transitions in Sb2Te3 under Hydrostatic Pressure up to 9 GPa. physica status solidi (a), 89(1), 301-309. doi:10.1002/pssa.2210890132Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., & Mahan, G. D. (2003). Thermoelectric properties ofSb2Te3under pressure and uniaxial stress. Physical Review B, 68(8). doi:10.1103/physrevb.68.085201Thonhauser, T. (2004). Influence of negative pressure on thermoelectric properties of Sb2Te3. Solid State Communications, 129(4), 249-253. doi:10.1016/j.ssc.2003.10.006Einaga, M., Tanabe, Y., Nakayama, A., Ohmura, A., Ishikawa, F., & Yamada, Y. (2010). New superconducting phase of Bi2Te3under pressure above 11 GPa. Journal of Physics: Conference Series, 215, 012036. doi:10.1088/1742-6596/215/1/012036Zhang, J. L., Zhang, S. J., Weng, H. M., Zhang, W., Yang, L. X., Liu, Q. Q., … Jin, C. Q. (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proceedings of the National Academy of Sciences, 108(1), 24-28. doi:10.1073/pnas.1014085108Jacobsen, M. K., Kumar, R. S., Cornelius, A. L., Sinogeiken, S. V., Nico, M. F., Elert, M., … Nguyen, J. (2008). HIGH PRESSURE X-RAY DIFFRACTION STUDIES OF Bi[sub 2−x]Sb[sub x]Te[sub 3] (x = 0,1,2). doi:10.1063/1.2833001Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., & Yamada, Y. (2009). Structural phase transition in Bi2Te3 under high pressure. High Pressure Research, 29(2), 245-249. doi:10.1080/08957950902951633Einaga, M., Ohmura, A., Nakayama, A., Ishikawa, F., Yamada, Y., & Nakano, S. (2011). Pressure-induced phase transition of Bi2Te3to a bcc structure. Physical Review B, 83(9). doi:10.1103/physrevb.83.092102Zhu, L., Wang, H., Wang, Y., Lv, J., Ma, Y., Cui, Q., … Zou, G. (2011). Substitutional Alloy of Bi and Te at High Pressure. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.145501Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276-278. doi:10.1134/1.1187126Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110Richter, W., & Becker, C. R. (1977). A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1). Physica Status Solidi (b), 84(2), 619-628. doi:10.1002/pssb.2220840226Sosso, G. C., Caravati, S., & Bernasconi, M. (2009). Vibrational properties of crystalline Sb2Te3from first principles. Journal of Physics: Condensed Matter, 21(9), 095410. doi:10.1088/0953-8984/21/9/095410Dagens, L. (1978). Phonon anomaly near a Fermi surface topological transition. Journal of Physics F: Metal Physics, 8(10), 2093-2113. doi:10.1088/0305-4608/8/10/010Dagens, L., & Lopez-Rios, C. (1979). Thermodynamic properties of a metal near a Fermi surface topological transition: the anomalous electron-phonon interaction contribution. Journal of Physics F: Metal Physics, 9(11), 2195-2216. doi:10.1088/0305-4608/9/11/011Goncharov, A. ., & Struzhkin, V. . (2003). Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Physica C: Superconductivity, 385(1-2), 117-130. doi:10.1016/s0921-4534(02)02311-0Antonangeli, D., Farber, D. L., Said, A. H., Benedetti, L. R., Aracne, C. M., Landa, A., … Klepeis, J. E. (2010). Shear softening in tantalum at megabar pressures. Physical Review B, 82(13). doi:10.1103/physrevb.82.132101Santamaría-Pérez, D., Vegas, A., Muehle, C., & Jansen, M. (2011). Structural behaviour of alkaline sulfides under compression: High-pressure experimental study on Cs2S. The Journal of Chemical Physics, 135(5), 054511. doi:10.1063/1.3617236Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112Larson, P. (2006). Effects of uniaxial and hydrostatic pressure on the valence band maximum inSb2Te3: An electronic structure study. Physical Review B, 74(20). doi:10.1103/physrevb.74.205113Lošťák, P., Beneš, L., Civiš, S., & Süssmann, H. (1990). Preparation and some physical properties of Bi2−xInxSe3 single crystals. Journal of Materials Science, 25(1), 277-282. doi:10.1007/bf00544220Horák, J., Quayle, P. C., Dyck, J. S., Drašar, Č., Lošt’ák, P., & Uher, C. (2008). Defect structure of Sb2−xCrxTe3 single crystals. Journal of Applied Physics, 103(1), 013516. doi:10.1063/1.2826940Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001Cardona, M. (2004). Phonon widths versus pressure. High Pressure Research, 24(1), 17-23. doi:10.1080/08957950310001635819Cardona, M. (2004). Effects of pressure on the phonon–phonon and electron–phonon interactions in semiconductors. physica status solidi (b), 241(14), 3128-3137. doi:10.1002/pssb.200405202Ulrich, C., Mroginski, M. A., Goñi, A. R., Cantarero, A., Schwarz, U., Muñoz, V., & Syassen, K. (1996). Vibrational Properties of InSe under Pressure: Experiment and Theory. physica status solidi (b), 198(1), 121-127. doi:10.1002/pssb.2221980117Kulibekov, A. M., Olijnyk, H. P., Jephcoat, A. P., Salaeva, Z. Y., Onari, S., & Allakhverdiev, K. R. (2003). Raman scattering under pressure and the phase transition in ɛ-GaSe. physica status solidi (b), 235(2), 517-520. doi:10.1002/pssb.200301613Cheng, W., & Ren, S.-F. (2011). Phonons of single quintuple Bi2Te3and Bi2Se3films and bulk materials. Physical Review B, 83(9). doi:10.1103/physrevb.83.094301Buga, S. G., Serebryanaya, N. R., Dubitskiy, G. A., Semenova, E. E., Aksenenkov, V. V., & Blank, V. D. (2011). Structure and electrical properties of Sb2Te3and Bi0.4Sb1.6Te3metastable phases obtained by HPHT treatment. High Pressure Research, 31(1), 86-90. doi:10.1080/08957959.2010.52342

    Structural and vibrational study of Bi2Se3 under high pressure

    Get PDF
    The structural and vibrational properties of bismuth selenide (Bi2Se3) have been studied by means of x-ray diffraction and Raman scattering measurements up to 20 and 30 GPa, respectively. The measurements have been complemented with ab initio total-energy and lattice dynamics calculations. Our experimental results evidence a phase transition from the low-pressure rhombohedral (R-3m) phase (B-Bi2Se3) with sixfold coordination for Bi to a monoclinic C2/m structure (B-Bi2Se3) with sevenfold coordination for Bi above 10 GPa. The equation of state and the pressure dependence of the lattice parameters and volume of a and B phases of Bi2Se3 are reported. Furthermore, the presence of a pressure-induced electronic topological phase transition in B-Bi2Se3 is discussed. Raman measurements evidence that Bi2Se3 undergoes two additional phase transitions around 20 and 28 GPa, likely toward a monoclinic C2/c and a disordered body-centered cubic structure with 8-fold and 9- or 10-fold coordination, respectively. These two high-pressure structures are the same as those recently found at high pressures in Bi2Te3 and Sb2Te3. On pressure release, Bi2Se3 reverts to the original rhombohedral phase after considerable hysteresis. Symmetries, frequencies, and pressure coefficients of the Raman and infrared modes in the different phases are reported and discussed.This work was done under financial support from Spanish Ministry of Science and Innovation under Projects No. MAT2007-66129, No. MAT2010-21270-C04-03/04, and No. CSD-2007-00045 and from the Valencian government under Project No. Prometeo/2011-035. It is also supported by the Ministry of Education, Youth and Sports of the Czech Republic Project No. MSM 0021627501

    High-pressure crystal structure, lattice vibrations, and band structure of BiSbO4

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.inorgchem.6b00503”The high-pressure crystal structure, lattice-vibrations HP crystal structure, lattice vibrations, and band , and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for. BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at similar to 33 degrees (38 degrees) to the c-axis and 47 degrees (42 degrees) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.Research supported by the Spanish government MINECO under Grant Nos. MAT2013-46649-C4-1/2/3-P and MAT2015-71070-REDC. We also acknowledge the computer time provided by MALTA cluster and the Red Espanola de Supercomputacion. Experiments were performed at MSPD beamline at ALBA Synchrotron Light Facility with the collaboration of ALBA staff.Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Gomis, O.; Achary, SN.; Popescu, C.; Patwe, SJ.... (2016). High-pressure crystal structure, lattice vibrations, and band structure of BiSbO4. Inorganic Chemistry. 55(10):4958-4969. doi:10.1021/acs.inorgchem.6b00503S49584969551

    Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph

    Full text link
    The following article appeared in Journal of Applied Physics and may be found at http://dx.doi.org/10.1063/1.4914407 . Authors own version of final article on e-print serversWe have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO4. Room-temperature pressure-volume equations of state are reported. BiPO4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO4. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO4. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15 degrees (21 degrees) to the a axis for the case of our experimental (theoretical) study. (C) 2015 AIP Publishing LLC.Research supported by the Spanish government MINECO under Grant No: MAT2013-46649-C4-1/2/3-P and by Generalitat Valenciana under Grants Nos. GVA-ACOMP-2013-1012 and GVA-ACOMP/2014/243. B.G.-D. thanks the financial support from MEC through FPI program. Experiments were performed at MSPD beamline at ALBA Synchrotron Light Facility with the collaboration of ALBA staff.Errandonea, D.; Gomis, O.; Santamaría Pérez, D.; García-Domene, B.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, SN.... (2015). Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. Journal of Applied Physics. 117:105902-1-105902-9. https://doi.org/10.1063/1.4914407S105902-1105902-911

    High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4

    Full text link
    [EN] Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.The authors are thankful for the financial support to this research from the Spanish Ministerio de Economia y Competitividad, the Spanish Research Agency, and the European Fund for Regional Development under Grant Nos: MAT2016-75586-C4-1-P/2-P/3-P and MAT2015-71070-REDC. AM and PR-H acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster.Errandonea, D.; Gomis, O.; Rodríguez Hernández, P.; Muñoz, A.; Ruiz Fuertes, J.; Gupta, M.; Achary, S.... (2018). High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4. Journal of Physics Condensed Matter. 30(6). https://doi.org/10.1088/1361-648X/aaa20dS30

    Structural and Lattice-Dynamical Properties of Tb2O3 under Compression: A Comparative Study with Rare Earth and Related Sesquioxides

    Get PDF
    [EN] We report a joint experimental and theoretical investigation of the high pressure structural and vibrational properties of terbium sesquioxide (Tb2O3). Powder X-ray diffraction and Raman scattering measurements show that cubic Ia (3 ) over bar (C-type) Tb2O3 undergoes two phase transitions up to 25 GPa. We observe a first irreversible reconstructive transition to the monoclinic C2/m (B-type) phase at similar to 7 GPa and a subsequent reversible displacive transition from the monoclinic to the trigonal P (3) over bar m1 (A-type) phase at similar to I-2 GPa. Thus, Tb2O3 is found to follow the well- known C -> B -> A phase transition sequence found in other cubic rare earth sesquioxides with cations of larger atomic mass than Tb. Our ab initio theoretical calculations predict phase transition pressures and bulk moduli for the three phases in rather good agreement with experimental results. Moreover, Raman-active modes of the three phases have been monitored as a function of pressure, while lattice-dynamics calculations have allowed us to confirm the assignment of the experimental phonon modes in the C- and A-type phases as well as to make a tentative assignment of the symmetry of most vibrational modes in the B-type phase. Finally, we extract the bulk moduli and the Raman-active mode frequencies together with their pressure coefficients for the three phases of Tb2O3 . These results are thoroughly compared and discussed in relation to those reported for rare earth and other related sesquioxides as well as with new calculations for selected sesquioxides. It is concluded that the evolution of the volume and bulk modulus of all the three phases of these technologically relevant compounds exhibit a nearly linear trend with respect to the third power of the ionic radii of the cations and that the values of the bulk moduli for the three phases depend on the filling of the f orbitals.The authors are thankful for the financial support of Generalitat Valenciana under Project PROMETEO 2018/123-EFIMAT and of the Spanish Ministerio de Economia y Competitividad under Projects MAT2015-71035-R, MAT2016-75586-C4-2/3/4-P, and FIS2017-2017-83295-P as well as MALTA Consolider Team research network under project RED2018-102612-T. J.A.S. also acknowledges the Ramon y Cajal program for funding support through RYC-2015-17482. A.M. and P.R.-H. acknowledge computing time provided by Red Española de Supercomputación (RES) and the MALTA Consolider Team cluster. HP-XRD experiments were performed at MPSD beamline of Alba Synchrotron (experiment no. 2016071772). We would like to thank Oriol Blázquez (Universitat de Barcelona) for his contribution to the Raman measurements.Ibañez, J.; Sans-Tresserras, JÁ.; Cuenca-Gotor, VP.; Oliva, R.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.... (2020). Structural and Lattice-Dynamical Properties of Tb2O3 under Compression: A Comparative Study with Rare Earth and Related Sesquioxides. Inorganic Chemistry. 59(14):9648-9666. https://doi.org/10.1021/acs.inorgchem.0c00834S964896665914Pan, T.-M., Chen, F.-H., & Jung, J.-S. (2010). Structural and electrical characteristics of high-k Tb2O3 and Tb2TiO5 charge trapping layers for nonvolatile memory applications. Journal of Applied Physics, 108(7), 074501. doi:10.1063/1.3490179Kao, C. H., Liu, K. C., Lee, M. H., Cheng, S. N., Huang, C. H., & Lin, W. K. (2012). High dielectric constant terbium oxide (Tb2O3) dielectric deposited on strained-Si:C. Thin Solid Films, 520(8), 3402-3405. doi:10.1016/j.tsf.2011.10.173Gray, N. W., Prestgard, M. C., & Tiwari, A. (2014). Tb2O3 thin films: An alternative candidate for high-k dielectric applications. Applied Physics Letters, 105(22), 222903. doi:10.1063/1.4903072Geppert, I., Eizenberg, M., Bojarczuk, N. A., Edge, L. F., Copel, M., & Guha, S. (2010). Determination of band offsets, chemical bonding, and microstructure of the (TbxSc1−x)2O3/Si system. Journal of Applied Physics, 108(2), 024105. doi:10.1063/1.3427554Belaya, S. V., Bakovets, V. V., Boronin, A. I., Koshcheev, S. V., Lobzareva, M. N., Korolkov, I. V., & Stabnikov, P. A. (2014). Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. Inorganic Materials, 50(4), 379-386. doi:10.1134/s0020168514040037Bakovets, V. V., Belaya, S. V., Lobzareva, M. N., & Maksimovskii, E. A. (2014). Kinetics of terbium oxide film growth from Tb(dpm)3 vapor. Inorganic Materials, 50(6), 576-581. doi:10.1134/s0020168514060016ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002Warshaw, I., & Roy, R. (1961). POLYMORPHISM OF THE RARE EARTH SESQUIOXIDES1. The Journal of Physical Chemistry, 65(11), 2048-2051. doi:10.1021/j100828a030Brauer, G., & Pfeiffer, B. (1965). Mischphasen aus Praseodym(III)-oxid und Terbium(III)-oxid. Zeitschrift f�r anorganische und allgemeine Chemie, 341(5-6), 237-243. doi:10.1002/zaac.19653410503Shevthenko, A. V., & Lopato, L. M. (1985). DTA method applikation to the highest refractory oxide systems investigation. Thermochimica Acta, 93, 537-540. doi:10.1016/0040-6031(85)85135-2Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043Manjón, F., Sans, J., Ibáñez, J., & Pereira, A. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals, 9(12), 630. doi:10.3390/cryst9120630Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301Lin, C.-M., Wu, K.-T., Hung, T.-L., Sheu, H.-S., Tsai, M.-H., Lee, J.-F., & Lee, J.-J. (2010). Phase transitions in under high pressure. Solid State Communications, 150(33-34), 1564-1569. doi:10.1016/j.ssc.2010.05.046Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154gLonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229Hai-Yong, C., Chun-Yuan, H., Chun-Xiao, G., Jia-Hua, Z., Shi-Yong, G., Hong-Liang, L., … Guang-Tian, Z. (2007). Structural Transition of Gd 2 O 3  :Eu Induced by High Pressure. Chinese Physics Letters, 24(1), 158-160. doi:10.1088/0256-307x/24/1/043Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703Bai, L., Liu, J., Li, X., Jiang, S., Xiao, W., Li, Y., … Zhang, D. (2009). Pressure-induced phase transformations in cubic Gd2O3. Journal of Applied Physics, 106(7), 073507. doi:10.1063/1.3236580Zou, X., Gong, C., Liu, B., Li, Q., Li, Z., Liu, B., … Song, H. (2011). X-ray diffraction of cubic Gd2 O3 /Er under high pressure. physica status solidi (b), 248(5), 1123-1127. doi:10.1002/pssb.201000706Zhang, C. C., Zhang, Z. M., Dai, R. C., Wang, Z. P., & Ding, Z. J. (2011). High Pressure Luminescence and Raman Studies on the Phase Transition of Gd2O3:Eu3+ Nanorods. Journal of Nanoscience and Nanotechnology, 11(11), 9887-9891. doi:10.1166/jnn.2011.5228Yang, X., Li, Q., Liu, Z., Bai, X., Song, H., Yao, M., … Liu, B. (2013). Pressure-Induced Amorphization in Gd2O3/Er3+ Nanorods. The Journal of Physical Chemistry C, 117(16), 8503-8508. doi:10.1021/jp312705uChen, G., Haire, R. G., & Peterson, J. R. (1991). Effect of pressure on cubic (C-type) Eu2O3studied via Eu3+luminescence. High Pressure Research, 6(6), 371-377. doi:10.1080/08957959208201045Chen, G., Stump, N. ., Haire, R. ., & Peterson, J. . (1992). Study of the phase behavior of Eu2O3 under pressure via luminescence of Eu3+. Journal of Alloys and Compounds, 181(1-2), 503-509. doi:10.1016/0925-8388(92)90347-cDilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913Sheng, J., Li-Gang, B., Jing, L., Wan-Sheng, X., Xiao-Dong, L., Yan-Chun, L., … Li-Rong, Z. (2009). The Phase Transition of Eu 2 O 3 under High Pressures. Chinese Physics Letters, 26(7), 076101. doi:10.1088/0256-307x/26/7/076101Irshad, K. A., Chandra Shekar, N. V., Srihari, V., Pandey, K. K., & Kalavathi, S. (2017). High pressure structural phase transitions in Ho: Eu2O3. Journal of Alloys and Compounds, 725, 911-915. doi:10.1016/j.jallcom.2017.07.224Yu, Z., Wang, Q., Ma, Y., & Wang, L. (2017). X-ray diffraction and spectroscopy study of nano-Eu2O3 structural transformation under high pressure. Journal of Alloys and Compounds, 701, 542-548. doi:10.1016/j.jallcom.2017.01.143Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889vYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2009). High-Pressure Phase Transition to the Gd2S3 Structure in Sc2O3: A New Trend in Dense Structures in Sesquioxides. Inorganic Chemistry, 48(16), 7537-7543. doi:10.1021/ic9001253Ovsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391Husson, E., Proust, C., Gillet, P., & Itié, J. . (1999). Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Materials Research Bulletin, 34(12-13), 2085-2092. doi:10.1016/s0025-5408(99)00205-6Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.18204Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Halevy, I., Carmon, R., Winterrose, M. L., Yeheskel, O., Tiferet, E., & Ghose, S. (2010). Pressure-induced structural phase transitions in Y2O3sesquioxide. Journal of Physics: Conference Series, 215, 012003. doi:10.1088/1742-6596/215/1/012003Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y2O3:Eu3+ Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-xYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042zBose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028Yamanaka, T., Nagai, T., Okada, T., & Fukuda, T. (2005). Structure change of Mn2O3under high pressure and pressure-induced transition. Zeitschrift für Kristallographie - Crystalline Materials, 220(11), 938-945. doi:10.1524/zkri.2005.220.11_2005.938Santillán, J., Shim, S.-H., Shen, G., & Prakapenka, V. B. (2006). High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3type. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026423Shim, S.-H., LaBounty, D., & Duffy, T. S. (2011). Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Physics and Chemistry of Minerals, 38(9), 685-691. doi:10.1007/s00269-011-0441-4Hong, F., Yue, B., Hirao, N., Liu, Z., & Chen, B. (2017). Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure. Scientific Reports, 7(1). doi:10.1038/srep44078Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363Garcia-Domene, B., Ortiz, H. M., Gomis, O., Sans, J. A., Manjón, F. J., Muñoz, A., … Tyagi, A. K. (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics, 112(12), 123511. doi:10.1063/1.4769747García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241Mcclure, J. P. High Pressure Phase Transistions in the Lanthanide Sesquioxides. Ph.D. Thesis, University of Nevada, Las Vegas, 2009, pp 1–154.Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105Jiang, H., Gomez-Abal, R. I., Rinke, P., & Scheffler, M. (2009). Localized and Itinerant States in Lanthanide Oxides United byGW @ LDA+U. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.126403Gillen, R., Clark, S. J., & Robertson, J. (2013). Nature of the electronic band gap in lanthanide oxides. Physical Review B, 87(12). doi:10.1103/physrevb.87.125116Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497aPathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668Lonappan, D., Chandra Shekar, N. V., Sahu, P. C., Kumar, J., Paul, R., & Paul, P. (2010). Unusually large structural stability of terbium oxide phase under high pressure. Journal of Alloys and Compounds, 490(1-2), 47-49. doi:10.1016/j.jallcom.2009.10.068Veber, P., Velázquez, M., Gadret, G., Rytz, D., Peltz, M., & Decourt, R. (2015). Flux growth at 1230 °C of cubic Tb2O3single crystals and characterization of their optical and magnetic properties. CrystEngComm, 17(3), 492-497. doi:10.1039/c4ce02006eIbáñez,

    High-pressure vibrational and optical study of Bi2Te3

    Get PDF
    We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te3) up to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The indirect bandgap of the low-pressure rhombohedral (R-3m) phase (α-Bi2Te3) was observed to decrease with pressure at a rate of −6 meV/GPa. In regard to lattice dynamics, Raman-active modes of α-Bi2Te3 were observed up to 7.4 GPa. The pressure dependence of their frequency and width provides evidence of the presence of an electronic-topological transition around 4.0 GPa. Above 7.4 GPa a phase transition is detected to the C2/m structure. On further increasing pressure two additional phase transitions, attributed to the C2/c and disordered bcc (Im-3m) phases, have been observed near 15.5 and 21.6 GPa in good agreement with the structures recently observed by means of x-ray diffraction at high pressures in Bi2Te3. After release of pressure the sample reverts back to the original rhombohedral phase after considerable hysteresis. Raman- and IR-mode symmetries, frequencies, and pressure coefficients in the different phases are reported and discussed.This work has been done under financial support from Spanish MICINN under projects MAT2008-06873-C02- 02, MAT2007-66129, Prometeo/2011-035, MAT2010-21270-C04-03/04, and CSD2007-00045 and supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501)

    High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: A comparison with isomorphic compounds

    Get PDF
    Raman scattering measurements and lattice-dynamics calculations have been performed on magnesium tungstate under high pressure up to 41 GPa. Experiments have been carried out under a selection of different pressure-media. The influence of non-hydrostaticity on the structural properties of MgWO4 and isomorphic compounds is examined. Under quasi-hydrostatic conditions a phase transition has been found at 26 GPa in MgWO4. The high-pressure phase has been tentatively assigned to a triclinic structure similar to that of CuWO4. We also report and discuss the Raman symmetries, frequencies, and pressure coefficients in the low- and high-pressure phases. In addition, the Raman frequencies for different wolframites are compared and the variation of the mode frequency with the reduced mass across the family is investigated. Finally, the accuracy of theoretical calculations is systematically discussed for MgWO4, MnWO4, FeWO4, CoWO4, NiWO4, ZnWO4, and CdWO4.Comment: 36 pages, 9 figures, 4 table

    High-pressure x-ray diffraction and ab initio study of Ni2Mo3N, Pd2Mo3N, Pt2Mo3N, Co3Mo3N, and Fe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides

    Full text link
    We have studied by means of high-pressure x-ray diffraction the structural stability of Ni2Mo3N, Co3Mo3N, and Fe3Mo3N. We also report ab initio computing modeling of the high-pressure properties of these compounds, Pd2Mo3N, and Pt2Mo3N. We have found that the nitrides remain stable in the ambient-pressure cubic structure at least up to 50 GPa and determined their equation of state. All of them have a bulk modulus larger than 300 GPa. Single-crystal elastic constants have been calculated in order to quantify the stiffness of the investigated nitrides. We found that they should have a Vickers hardness similar to that of cubic spinel nitrides like gamma-Si3N4Comment: 25 pages, 6 figures, 3 table
    corecore