31 research outputs found

    Sedimentology and provenance of Carboniferous and Permian rocks of Athens County, Southeastern Ohio

    Get PDF
    Originally prepared for the 1998 North-Central Section meeting of the Geological Society of America

    Role of pair-breaking and phase fluctuations in c-axis tunneling in underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}

    Full text link
    The Josephson Plasma Resonance is used to study the c-axis supercurrent in the superconducting state of underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with varying degrees of controlled point-like disorder, introduced by high-energy electron irradiation. As disorder is increased, the Josephson Plasma frequency decreases proportionally to the critical temperature. The temperature dependence of the plasma frequency does not depend on the irradiation dose, and is in quantitative agreement with a model for quantum fluctuations of the superconducting phase in the CuO2_{2} layers.Comment: 2 pages, submitted to the Proceedings of M2S-HTSC VIII Dresde

    Electrical and structural properties of MgB2 films prepared by sequential deposition of B and Mg on the NbN buffered Si(100) substrate

    Full text link
    We introduce a simple method of an MgB2 film preparation using sequential electron-beam evaporation of B-Mg two-layer (followed by in-situ annealing) on the NbN buffered Si(100) substrate. The Transmission Electron Microscopy analyses confirm a growth of homogeneous nanogranular MgB2 films without the presence of crystalline MgO. A sensitive measurement of temperature dependence of microwave losses shows a presence of intergranular weak links close the superconducting transition only. The MgB2 films obtained, about 200 nm thick, exhibit a maximum zero resistance critical temperature of 36 K and critical current density of 3x10^7 A/cm^2 at 13.2 KComment: 11 pages, 6 figures, submitted to Appl. Phys. Let

    Strong Pinning in High Temperature Superconductors

    Full text link
    Detailed measurements of the critical current density jc of YBa2Cu3O7 films grown by pulsed laser deposition reveal the increase of jc as function of the filmthickness. Both this thickness dependence and the field dependence of the critical current are consistently described using a generalization of the theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024 (1991)]. From the model, we deduce values of the defect density (10^21 m^-3) and the elementary pinning force, which are in good agreement with the generally accepted values for Y2O3-inclusions. In the absence of clear evidence that the critical current is determined by linear defects or modulations of the film thickness, our model provides an alternative explanation for the rather universal field dependence of the critical current density found in YBa2Cu3O7 films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002

    X-ray characterization of films formed by pulsed laser deposition on cold substrates from YBaCuO targets

    No full text
    Grazing-incidence X-ray diffraction supplemented with atomic force microscopy and secondary ion mass spectroscopy were applied to the characterization of films deposited by laser ablation on cold substrates from YBaCuO targets and subsequently irradiated with additional laser pulses of lower energy density. Evolution of X-ray diffraction pattern was observed as a function of irradiation dose. For the as-deposited films the pattern was typical of the amorphized solids. For the films irradiated with doses higher than the threshold, the pattern was enriched with the diffraction peaks, whose general features, like peak positions, widths and relative intensities were almost independent of the dose. The size of the crystallites was deduced from the peak widths to be not smaller than 12-16 nm. Comparison of the pattern with patterns of known phases indicates that, apart of the amorphous component, a structure with an admixture of some new metastable or high temperature phase(s) is formed during the process of pulsed laser annealing. The atomic force microscopy observations revealed that the surface roughness shows a pronounced minimum at low irradiation doses. The secondary ion mass spectroscopy investigation confirms that the strongest chemical changes (increase in concentration of yttrium and copper) due to irradiation with higher doses are observed in the near-surface film material
    corecore