320 research outputs found
Learning a Static Analyzer from Data
To be practically useful, modern static analyzers must precisely model the
effect of both, statements in the programming language as well as frameworks
used by the program under analysis. While important, manually addressing these
challenges is difficult for at least two reasons: (i) the effects on the
overall analysis can be non-trivial, and (ii) as the size and complexity of
modern libraries increase, so is the number of cases the analysis must handle.
In this paper we present a new, automated approach for creating static
analyzers: instead of manually providing the various inference rules of the
analyzer, the key idea is to learn these rules from a dataset of programs. Our
method consists of two ingredients: (i) a synthesis algorithm capable of
learning a candidate analyzer from a given dataset, and (ii) a counter-example
guided learning procedure which generates new programs beyond those in the
initial dataset, critical for discovering corner cases and ensuring the learned
analysis generalizes to unseen programs.
We implemented and instantiated our approach to the task of learning
JavaScript static analysis rules for a subset of points-to analysis and for
allocation sites analysis. These are challenging yet important problems that
have received significant research attention. We show that our approach is
effective: our system automatically discovered practical and useful inference
rules for many cases that are tricky to manually identify and are missed by
state-of-the-art, manually tuned analyzers
A Comparative Study of Different In Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes
To determine the potential inhalatory risk posed by carbon nanotubes (CNTs), a tier-based approach beginning with an in vitro assessment must be adopted. The purpose of this study therefore was to compare 4 commonly used in vitro systems of the human lung (human blood monocyte-derived macrophages [MDM] and monocyte-derived dendritic cells [MDDC], 16HBE14o- epithelial cells, and a sophisticated triple cell co-culture model [TCC-C]) via assessment of the biological impact of different CNTs (single-walled CNTs [SWCNTs] and multiwalled CNTs [MWCNTs]) over 24h. No significant cytotoxicity was observed with any of the cell types tested, although a significant (p < .05), dose-dependent increase in tumor necrosis factor (TNF)-α following SWCNT and MWCNT exposure at concentrations up to 0.02mg/ml to MDM, MDDC, and the TCC-C was found. The concentration of TNF-α released by the MDM and MDDC was significantly higher (p < .05) than the TCC-C. Significant increases (p < .05) in interleukin (IL)-8 were also found for both 16HBE14o- epithelial cells and the TCC-C after SWCNTs and MWCNTs exposure up to 0.02mg/ml. The TCC-C, however, elicited a significantly (p < .05) higher IL-8 release than the epithelial cells. The oxidative potential of both SWCNTs and MWCNTs (0.005-0.02mg/ml) measured by reduced glutathione (GSH) content showed a significant difference (p < .05) between each monoculture and the TCC-C. It was concluded that because only the co-culture system could assess each endpoint adequately, that, in comparison with monoculture systems, multicellular systems that take into consideration important cell type-to-cell type interactions could be used as predictive in vitro screening tools for determining the potential deleterious effects associated with CNT
Optomagnetic composite medium with conducting nanoelements
A new type of metal-dielectric composites has been proposed that is
characterised by a resonance-like behaviour of the effective permeability in
the infrared and visible spectral ranges. This material can be referred to as
optomagnetic medium. The analytical formalism developed is based on solving the
scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The
presence of the effective magnetic permeability and its resonant properties
lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66,
200
Observation of squeezed light from one atom excited with two photons
Single quantum emitters like atoms are well-known as non-classical light
sources which can produce photons one by one at given times, with reduced
intensity noise. However, the light field emitted by a single atom can exhibit
much richer dynamics. A prominent example is the predicted ability for a single
atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or
phase fluctuations. It has long been foreseen, though, that such squeezing
would be "at least an order of magnitude more difficult" to observe than the
emission of single photons. Squeezed beams have been generated using
macroscopic and mesoscopic media down to a few tens of atoms, but despite
experimental efforts, single-atom squeezing has so far escaped observation.
Here we generate squeezed light with a single atom in a high-finesse optical
resonator. The strong coupling of the atom to the cavity field induces a
genuine quantum mechanical nonlinearity, several orders of magnitude larger
than for usual macroscopic media. This produces observable quadrature squeezing
with an excitation beam containing on average only two photons per system
lifetime. In sharp contrast to the emission of single photons, the squeezed
light stems from the quantum coherence of photon pairs emitted from the system.
The ability of a single atom to induce strong coherent interactions between
propagating photons opens up new perspectives for photonic quantum logic with
single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages,
2 figures). Revised versio
Sex differences in condition dependence of natal dispersal in a large herbivore: dispersal propensity and distance are decoupled
International audienceEvolution should favour plasticity in dispersal decisions in response to spatial heterogeneity in social and environmental contexts. Sex differences in individual optimization of dispersal decisions are poorly documented in mammals, because species where both sexes commonly disperse are rare. To elucidate the sex-specific drivers governing dispersal, we investigated sex differences in condition dependence in the propensity and distance of natal dispersal in one such species, the roe deer, using fine-scale monitoring of 146 GPS-collared juveniles in an intensively monitored population in southwest France. Dispersal propensity increased with body mass in males such that 36% of light individuals dispersed, whereas 62% of heavy individuals did so, but there was no evidence for condition dependence in dispersal propensity among females. By contrast, dispersal distance increased with body mass at a similar rate in both sexes such that heavy dispersers travelled around twice as far as light dispersers. Sex differences in the strength of condition-dependent dispersal may result from different selection pressures acting on the behaviour of males and females. We suggest that females disperse prior to habitat saturation being reached, likely in relation to the risk of inbreeding. By contrast, natal dispersal in males is likely governed by competitive exclusion through male–male competition for breeding opportunities in this strongly territorial mammal. Our study is, to our knowledge, a first demonstration that condition dependence in dispersal propensity and dispersal distance may be decoupled, indicating contrasting selection pressures drive the behavioural decisions of whether or not to leave the natal range, and where to settle
Fast cavity-enhanced atom detection with low noise and high fidelity
Cavity quantum electrodynamics describes the fundamental interactions between
light and matter, and how they can be controlled by shaping the local
environment. For example, optical microcavities allow high-efficiency detection
and manipulation of single atoms. In this regime fluctuations of atom number
are on the order of the mean number, which can lead to signal fluctuations in
excess of the noise on the incident probe field. Conversely, we demonstrate
that nonlinearities and multi-atom statistics can together serve to suppress
the effects of atomic fluctuations when making local density measurements on
clouds of cold atoms. We measure atom densities below 1 per cavity mode volume
near the photon shot-noise limit. This is in direct contrast to previous
experiments where fluctuations in atom number contribute significantly to the
noise. Atom detection is shown to be fast and efficient, reaching fidelities in
excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and
discussion according to referee comments; published in Nature Communications
with open acces
Calcaneal nonunion: three cases and a review of the literature
The long-term follow-up of intra-articular calcaneal fractures is often accompanied by complications. Frequently occurring are arthrosis, arthrofibrosis of the subtalar joint, and malunion. Uncommon is the calcaneal nonunion. A total of three cases is presented in this report, including a review of the literature. The occurrence of a nonunion appears to be more common after conservative treatment, but the pathophysiology remains unclear, however smoking may play a role
Strong Interactions of Single Atoms and Photons near a Dielectric Boundary
Modern research in optical physics has achieved quantum control of strong
interactions between a single atom and one photon within the setting of cavity
quantum electrodynamics (cQED). However, to move beyond current
proof-of-principle experiments involving one or two conventional optical
cavities to more complex scalable systems that employ N >> 1 microscopic
resonators requires the localization of individual atoms on distance scales <
100 nm from a resonator's surface. In this regime an atom can be strongly
coupled to a single intracavity photon while at the same time experiencing
significant radiative interactions with the dielectric boundaries of the
resonator. Here, we report an initial step into this new regime of cQED by way
of real-time detection and high-bandwidth feedback to select and monitor single
Cesium atoms localized ~100 nm from the surface of a micro-toroidal optical
resonator. We employ strong radiative interactions of atom and cavity field to
probe atomic motion through the evanescent field of the resonator. Direct
temporal and spectral measurements reveal both the significant role of
Casimir-Polder attraction and the manifestly quantum nature of the atom-cavity
dynamics. Our work sets the stage for trapping atoms near micro- and
nano-scopic optical resonators for applications in quantum information science,
including the creation of scalable quantum networks composed of many
atom-cavity systems that coherently interact via coherent exchanges of single
photons.Comment: 8 pages, 5 figures, Supplemental Information included as ancillary
fil
On the lease rate, convenience yield and speculative effects in the gold futures market
By examining data on the gold forward offered rate (GOFO) and lease rates over the period 1996- 2009, we conclude that the convenience yield of gold is better approximated by the lease rate than the interest-adjusted spread of Fama & French (1983). Using the latter quantity, we study the relationship between gold leasing and the level of COMEX discretionary inventory and exhibit that lease rates are negatively related to inventories. We also show that Futures prices have increasingly exceeded forward prices over the period, and this effect increases with the speculative pressure and the maturity of the contracts
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
- …