145 research outputs found

    Does FXIII Deficiency Impair Wound Healing after Myocardial Infarction?

    Get PDF
    Inadequate healing of myocardial infarction may contribute to local expansion of the infarct, frequently leading to chamber dilation, heart failure, or myocardial rupture. Experimental evidence in mouse models suggests that Factor XIII might play a key role in wound healing, and low persistent values lead to increased incidence of cardiac rupture following myocardial infarction. Here we would like to share our initial clinical experiences with strikingly similar observations in patients with this grave disease, and compare these observations to experimental findings

    Optical interferometry-based array of seafloor environmental sensors using a trans-oceanic submarine cable

    Get PDF
    Optical fiber–based sensing technology can drastically improve Earth observations by enabling the use of existing submarine communication cables as seafloor sensors. Previous interferometric and polarization-based techniques demonstrated environmental sensing over cable lengths up to 10,500 kilometers. However, measurements were limited to the integrated changes over the entire length of the cable. We demonstrate the detection of earthquakes and ocean signals on individual spans between repeaters of a 5860-kilometer-long transatlantic cable rather than the whole cable. By applying this technique to the existing undersea communication cables, which have a repeater-to-repeater span length of 45 to 90 kilometers, the largely unmonitored ocean floor could be instrumented with thousands of permanent real-time environmental sensors without changes to the underwater infrastructure

    Three-dimension structure of ventricular myocardial fibers after myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore the pathological changes of three-dimension structure of ventricular myocardial fibers after anterior myocardial infarction in dog heart.</p> <p>Methods</p> <p>Fourteen acute anterior myocardial infarction models were made from healthy dogs (mean weight 17.6 ± 2.5 kg). Six out of 14 dogs with old myocardial infarction were sacrificed, and their hearts were harvested after they survived the acute anterior myocardial infarction for 3 months. Each heart was dissected into ventricular myocardial band (VMB), morphological characters in infarction region were observed, and infarct size percents in descending segment and ascending segment were calculated.</p> <p>Results</p> <p>Six dog hearts were successfully dissected into VMB. Uncorresponding damages in myocardial fibers of descending segment and ascending segment were found in apical circle in anterior wall infarction. Infarct size percent in the ascending segment was significantly larger than that in the descending segment (23.36 ± 3.15 (SD) vs 30.69 ± 2.40%, P = 0.0033); the long axis of infarction area was perpendicular to the orientation of myocardial fibers in ascending segment; however, the long axis of the infarction area was parallel with the orientation of myocardial fibers in descending segment.</p> <p>Conclusions</p> <p>We found that damages were different in both morphology and size in ascending segment and descending segment in heart with myocardial infarction. This may provide an important insight for us to understand the mechanism of heart failure following coronary artery diseases.</p

    What is treatment success in cardiac resynchronization therapy?

    Get PDF
    Cardiac resynchronization therapy (CRT) is an established treatment for symptomatic patients with heart failure, a prolonged QRS duration, and impaired left ventricular (LV) function. Identification of ‘responders’ and ‘non-responders’ to CRT has attracted considerable attention. The response to CRT can be measured in terms of symptomatic response or clinical outcome, or both. Alternatively, the response to CRT can be measured in terms of changes in surrogate measures of outcome, such as LV volumes, LV ejection fraction, invasive measures of cardiac performance, peak oxygen uptake, and neurohormones. This review explores whether these measures can be used in assessing the symptomatic and prognostic response to CRT. The role of these parameters to the management of individual patients is also discussed

    Non-uniform recovery of left ventricular transmural mechanics in ST-segment elevation myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After a transient ischemic episode, the subendocardial region is more severely injured than outer subepicardial layers and may regain a proportionately greater degree of mechanical function in the longitudinal direction. We sought to explore left ventricular (LV) transmural mechanics in patients with ST-segment elevation myocardial infarction (STEMI) for determining the mechanism underlying recovery of global LV function after primary percutaneous coronary intervention (PCI).</p> <p>Methods</p> <p>A total of 42 patients (62 ± 11 years old, 71% male) with a first STEMI underwent serial assessments of LV longitudinal, circumferential and radial strains (LS, CS and RS) by selective tracking of subendocardial and subepicardial regions within 48 hours and a median of 5 months after PCI. LV mechanical parameters were compared with sixteen age and gender matched normal controls.</p> <p>Results</p> <p>In comparison with controls, endocardial and epicardial LS were markedly attenuated at 48 hours following PCI (P < 0.001). An improvement in LV ejection fraction (EF > 5%) following PCI was seen in 24 (57%) patients and was associated with improvement in endocardial and epicardial LS (P < 0.001 and P = 0.003, respectively) and endocardial CS (P = 0.01). Radial strain and wall motion score index, however, remained persistently abnormal. The change in endocardial LS (OR 1.2, 95% CI 1.03 to 1.42, P = 0.01) and the change in epicardial LS (OR 1.2, 95% 1.03 to 1.46, P = 0.02) were significantly associated with the improvement in LVEF, independent of the location of STEMI and the presence of underlying multivessel disease.</p> <p>Conclusions</p> <p>In patients with STEMI treated by PCI, the recovery of LV subendocardial shortening strain seen in the longitudinal direction underlies the improvement in LV global function despite persistent abnormalities in radial mechanics and wall motion score index.</p

    Left ventricular volume: an optimal parameter to detect systolic dysfunction on prospectively triggered 64-multidetector row computed tomography: another step towards reducing radiation exposure

    Get PDF
    In this study, we define the correlation between LV volumes (both LV end-diastolic volume [LVEDV] and LV end-systolic volume [LVESV]) and ejection fraction (EF) on 64 slice multi-detector computed tomography (MDCT). We also determine the accuracy of all the LV volume (LVV) parameters to detect LV systolic dysfunction (LVSD) and investigate the feasibility of using LVV as a surrogate of LVSD on prospectively gated imaging to prevent the radiation exposure of retrospective imaging. 568 patients undergoing 64-detector MDCT were divided into 2 groups: Group 1—subjects without any heart disease and LVEF ≥ 50%; and Group 2—patients with coronary artery disease and LVEF < 50% (defined as LVSD). The LVV (LV cavity only) and Total LV volume (cavity + LV mass) at end-systole and end-diastole (LVESV, Total LVESV, LVEDV and Total LVEDV) were measured. The upper limit values (mean + 2 SD) of all LVV parameters in Group 1 were used as the reference criterion to diagnose LVSD in Group 2. An exponential correlation was found between LVEF and all the LVV parameters. The specificity to detect LVSD in Group 2 was >90% and the sensitivity was 88.9, 83.3, 61.3 and 74.9% by using LVESV, Total LVESV, LVEDV and Total LVEDV, respectively. Systolic and diastolic LV volumes had a high correlation with LVEF and a high accuracy to detect LVSD. Thus, on prospectively triggered imaging, ventricular volumes can predict patients with reduced LVEF, and appropriate referrals can be made
    corecore