105 research outputs found

    Hiding in Plain Sight-Ancient Chinese Anatomy

    Get PDF
    For thousands of years, scientists have studied human anatomy by dissecting bodies. Our knowledge of their findings is limited, however, both by the subsequent loss of many of the oldest texts, and by a tendency towards a Eurocentric perspective in medicine. As a discipline, anatomy tends to be much more familiar with ancient Greek texts than with those from India, China or Persia. Here we show that the Mawangdui medical texts, entombed in the Mawangdui burial site in Changsha, China 168BCE, are the oldest surviving anatomical atlas in the world. These medical texts both predate and inform the later acupuncture texts which have been the foundation for acupuncture practice in the subsequent two millennia. The skills necessary to interpret them are diverse, requiring the researcher firstly to read the original Chinese, and secondly to perform the anatomical investigations that allow a re-viewing of the structures that the texts refer to. Acupuncture meridians are considered to be esoteric in nature, but these texts are clearly descriptions of the physical body. As such, they represent a previously hidden chapter in the history of anatomy, and a new perspective on acupuncture

    GABA and glutamate moderate beta-amyloid related functional connectivity in cognitively unimpaired old-aged adults

    Full text link
    BACKGROUND Effects of beta-amyloid accumulation on neuronal function precede the clinical manifestation of Alzheimer's disease (AD) by years and affect distinct cognitive brain networks. As previous studies suggest a link between beta-amyloid and dysregulation of excitatory and inhibitory neurotransmitters, we aimed to investigate the impact of GABA and glutamate on beta-amyloid related functional connectivity. METHODS 29 cognitively unimpaired old-aged adults (age = 70.03 ± 5.77 years) were administered 11C-Pittsburgh Compound B (PiB) positron-emission tomography (PET), and MRI at 7 Tesla (7T) including blood oxygen level dependent (BOLD) functional MRI (fMRI) at rest for measuring static and dynamic functional connectivity. An advanced 7T MR spectroscopic imaging (MRSI) sequence based on the free induction decay acquisition localized by outer volume suppression' (FIDLOVS) technology was used for gray matter specific measures of GABA and glutamate in the posterior cingulate and precuneus (PCP) region. RESULTS GABA and glutamate MR-spectra indicated significantly higher levels in gray matter than in white matter. A global effect of beta-amyloid on functional connectivity in the frontal, occipital and inferior temporal lobes was observable. Interactive effects of beta-amyloid with gray matter GABA displayed positive PCP connectivity to the frontomedial regions, and the interaction of beta-amyloid with gray matter glutamate indicated positive PCP connectivity to frontal and cerebellar regions. Furthermore, decreased whole-brain but increased fronto-occipital and temporo-parietal dynamic connectivity was found, when GABA interacted with regional beta-amyloid deposits in the amygdala, frontal lobe, hippocampus, insula and striatum. CONCLUSIONS GABA, and less so glutamate, may moderate beta-amyloid related functional connectivity. Additional research is needed to better characterize their interaction and potential impact on AD

    Ulk4 regulates GABAergic signaling and anxiety-related behavior

    Get PDF
    Excitation/inhibition imbalance has been proposed as a fundamental mechanism in the pathogenesis of neuropsychiatric and neurodevelopmental disorders, in which copy number variations of the Unc-51 like kinase 4 (ULK4) gene encoding a putative Serine/Threonine kinase have been reported in approximately 1/1000 of patients suffering pleiotropic clinical conditions of schizophrenia, depression, autistic spectrum disorder (ASD), developmental delay, language delay, intellectual disability, or behavioral disorder. The current study characterized behavior of heterozygous Ulk4(+/tm1a) mice, demonstrating that Ulk4(+/tm1a) mice displayed no schizophrenia-like behavior in acoustic startle reactivity and prepulse inhibition tests or depressive-like behavior in the Porsolt swim or tail suspension tests. However, Ulk4(+/tm1a) mice exhibited an anxiety-like behavioral phenotype in several tests. Previously identified hypo-anxious (Atp1a2, Ptn, and Mdk) and hyper-anxious (Gria1, Syngap1, and Npy2r) genes were found to be dysregulated accordingly in Ulk4 mutants. Ulk4 was found to be expressed in GABAergic neurons and the Gad67⁺ interneurons were significantly reduced in the hippocampus and basolateral amygdala of Ulk4(+/tm1a) mice. Transcriptome analyses revealed a marked reduction of GABAergic neuronal subtypes, including Pvalb, Sst, Cck, Npy, and Nos3, as well as significant upregulation of GABA receptors, including Gabra1, Gabra3, Gabra4, Gabra5, and Gabrb3. This is the first evidence that Ulk4 plays a major role in regulating GABAergic signaling and anxiety-like behavior, which may have implications for the development of novel anxiolytic treatments

    Increased cerebral blood volume in small arterial vessels is a correlate of amyloid-β-related cognitive decline

    Full text link
    The protracted accumulation of amyloid-β (Aβ) is a major pathologic hallmark of Alzheimer's disease and may trigger secondary pathological processes that include neurovascular damage. This study was aimed at investigating long-term effects of Aβ burden on cerebral blood volume of arterioles and pial arteries (CBVa), possibly present before manifestation of dementia. Aβ burden was assessed by 11C Pittsburgh compound-B positron emission tomography in 22 controls and 18 persons with mild cognitive impairment (MCI), [ages: 75(±6) years]. After 2 years, inflow-based vascular space occupancy at ultra-high field strength of 7-Tesla was administered for measuring CBVa, and neuropsychological testing for cognitive decline. Crushing gradients were incorporated during MR-imaging to suppress signals from fast-flowing blood in large arteries, and thereby sensitize inflow-based vascular space occupancy to CBVa in pial arteries and arterioles. CBVa was significantly elevated in MCI compared to cognitively normal controls and regional CBVa related to local Aβ deposition. For both MCI and controls, Aβ burden and follow-up CBVa in several brain regions synergistically predicted cognitive decline over 2 years. Orbitofrontal CBVa was positively associated with apolipoprotein E e4 carrier status. Increased CBVa may reflect long-term effects of region-specific pathology associated with Aβ deposition. Additional studies are needed to clarify the role of the arteriolar system and the potential of CBVa as a biomarker for Aβ-related vascular downstream pathology

    The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders

    Get PDF
    Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a case–control association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5′ flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond

    Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer's Disease Patients

    Get PDF
    Efficacy of future treatments depends on biomarkers identifying patients with mild cognitive impairment at highest risk for transitioning to Alzheimer's disease. Here, we applied recently developed analysis techniques to investigate cross-sectional differences in subcortical shape and volume alterations in patients with stable mild cognitive impairment (MCI) (n = 23, age range 59-82, 47.8% female), future converters at baseline (n = 10, age range 66-84, 90% female) and at time of conversion (age range 68-87) compared to group-wise age and gender matched healthy control subjects (n = 23, age range 61-81, 47.8% female; n = 10, age range 66-82, 80% female; n = 10, age range 68-82, 70% female). Additionally, we studied cortical thinning and global and local measures of hippocampal atrophy as known key imaging markers for Alzheimer's disease. Apart from bilateral striatal volume reductions, no morphometric alterations were found in cognitively stable patients. In contrast, we identified shape alterations in striatal and thalamic regions in future converters at baseline and at time of conversion. These shape alterations were paralleled by Alzheimer's disease like patterns of left hemispheric morphometric changes (cortical thinning in medial temporal regions, hippocampal total and subfield atrophy) in future converters at baseline with progression to similar right hemispheric alterations at time of conversion. Additionally, receiver operating characteristic curve analysis indicated that subcortical shape alterations may outperform hippocampal volume in identifying future converters at baseline. These results further confirm the key role of early cortical thinning and hippocampal atrophy in the early detection of Alzheimer's disease. But first and foremost, and by distinguishing future converters but not patients with stable cognitive abilities from cognitively normal subjects, our results support the value of early subcortical shape alterations and reduced hippocampal subfield volumes as potential markers for the early detection of Alzheimer's disease
    corecore