437 research outputs found

    High resolution spectroscopy for Cepheids distance determination. V. Impact of the cross-correlation method on the p-factor and the gamma-velocities

    Full text link
    The cross correlation method (hereafter CC) is widely used to derive the radial velocity curve of Cepheids when the signal to noise of the spectra is low. However, if it is used with the wrong projection factor, it might introduce some biases in the Baade-Wesselink (hereafter BW) methods of determining the distance of Cepheids. In addition, it might affect the average value of the radial velocity curve (or gamma-velocity) important for Galactic structure studies. We aim to derive a period-projection factor relation (hereafter Pp) appropriate to be used together with the CC method. Moreover, we investigate whether the CC method can explain the misunderstood previous calculation of the K-term of Cepheids. We observed eight galactic Cepheids with the HARPS spectrograph. For each star, we derive an interpolated CC radial velocity curve using the HARPS pipeline. The amplitudes of these curves are used to determine the correction to be applied to the semi-theoretical projection factor derived in Nardetto et al. (2007). Their average value (or gamma-velocity) are also compared to the center-of-mass velocities derived in Nardetto et al. (2008). The correction in amplitudes allows us to derive a new Pp relation: p = [-0.08+-0.05] log P +[1.31+-0.06]. We also find a negligible wavelength dependence (over the optical range) of the Pp relation. We finally show that the gamma-velocity derived from the CC method is systematically blue-shifted by about 1.0 +- 0.2km/s compared to the center-of-mass velocity of the star. An additional blue-shift of 1.0km/s is thus needed to totally explain the previous calculation of the K-term of Cepheids (around 2km/s). The new Pp relation we derived is a solid tool for the distance scale calibration (abridged).Comment: Comments : 9 pages, 3 Postscript figures, 5 Tables, accepted for publication in A&

    BVRIJK light curves and radial velocity curves for selected Magellanic Cloud Cepheids

    Get PDF
    We present high precision and well sampled BVRIJK light curves and radial velocity curves for a sample of five Cepheids in the SMC. In addition we present radial velocity curves for three Cepheids in the LMC. The low metallicity (Fe/H ~ -0.7) SMC stars have been selected for use in a Baade-Wesselink type analysis to constrain the metallicity effect on the Cepheid Period-Luminosity relation. The stars have periods of around 15 days so they are similar to the Cepheids observed by the Extragalactic Distance Scale Key Project on the Hubble Space Telescope. We show that the stars are representative of the SMC Cepheid population at that period and thus will provide a good sample for the proposed analysis. The actual Baade-Wesselink analysis are presented in a companion paper.Comment: Accepted for publication in A&A, 23 pages, 10 figures, data tables will be made available electronically from the CD

    First DENIS I-band extragalactic catalog

    Get PDF
    This paper presents the first I-band photometric catalog of the brightest galaxies extracted from the Deep Near Infrared Survey of the Southern Sky (DENIS) An automatic galaxy recognition program has been developed to build this provisional catalog. The method is based on a discriminating analysis. The most discriminant parameter to separate galaxies from stars is proved to be the peak intensity of an object divided by its array. Its efficiency is better than 99%. The nominal accuracy for galaxy coordinates calculated with the Guide Star Catalog is about 6 arcseconds. The cross-identification with galaxies available in the Lyon-Meudon Extragalactic DAtabase (LEDA) allows a calibraton of the I-band photometry with the sample of Mathewson et Al. Thus, the catalog contains total I-band magnitude, isophotal diameter, axis ratio, position angle and a rough estimate of the morphological type code for 20260 galaxies. The internal completeness of this catalog reaches magnitude Ilim=14.5I_{lim}=14.5, with a photometric accuracy of 0.18m\sim 0.18m. 25% of the Southern sky has been processed in this study. This quick look analysis allows us to start a radio and spectrographic follow-up long before the end of the survey.Comment: 13 pages, 17 figures, to appear A&A Supl.

    The long-period Galactic Cepheid RS Puppis - III. A geometric distance from HST polarimetric imaging of its light echoes

    Full text link
    As one of the most luminous Cepheids in the Milky Way, the 41.5-day RS Puppis is an analog of the long-period Cepheids used to measure extragalactic distances. An accurate distance to this star would therefore help anchor the zero-point of the bright end of the period-luminosity relation. But, at a distance of about 2 kpc, RS Pup is too far away for measuring a direct trigonometric parallax with a precision of a few percent with existing instrumentation. RS Pup is unique in being surrounded by a reflection nebula, whose brightness varies as pulses of light from the Cepheid propagate outwards. We present new polarimetric imaging of the nebula obtained with HST/ACS. The derived map of the degree of linear polarization pL allows us to reconstruct the three-dimensional structure of the dust distribution. To retrieve the scattering angle from the pL value, we consider two different polarization models, one based on a Milky Way dust mixture and one assuming Rayleigh scattering. Considering the derived dust distribution in the nebula, we adjust a model of the phase lag of the photometric variations over selected nebular features to retrieve the distance of RS Pup. We obtain a distance of 1910 +/- 80 pc (4.2%), corresponding to a parallax of 0.524 +/- 0.022 mas. The agreement between the two polarization models we considered is good, but the final uncertainty is dominated by systematics in the adopted model parameters. The distance we obtain is consistent with existing measurements from the literature, but light echoes provide a distance estimate that is not subject to the same systematic uncertainties as other estimators (e.g. the Baade-Wesselink technique). RS Pup therefore provides an important fiducial for the calibration of systematic uncertainties of the long-period Cepheid distance scale.Comment: 14 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    A Direct Distance to the LMC Cepheid HV 12198 from the Infrared Surface Brightness Technique

    Get PDF
    We report on a first application of the infrared surface brightness technique on a Cepheid in the Large Magellanic Cloud, the variable HV 12198 in the young globular cluster NGC 1866. From this one star, we determine a distance modulus of 18.42 +- 0.10 (random and systematic uncertainty) to the cluster. When the results on further member Cepheids in NGC 1866 become available, we expect to derive the distance to the LMC with a +- 3-4 percent accuracy, including systematic errors, from this technique.Comment: 4 pages, 4 figures, accepted in ApJ Letter

    Is the far border of the Local Void expanding?

    Full text link
    According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km/s. In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km/s and 5000 km/s, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km/s, which is not significantly different from zero. Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km/s equivalent to what is found at the position of the Local Group.Comment: 15 pages, 6 figures, and 4 tables. Accepted for publication in A&

    The long-period Galactic Cepheid RS Puppis - II. 3D structure and mass of the nebula from VLT/FORS polarimetry

    Full text link
    The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.Comment: 14 pages, 21 figures. Accepted for publication in A&

    The Araucaria Project. An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables

    Full text link
    In a previous paper, we reported on the discovery of more than a hundred new Cepheid variables in the Sculptor Group spiral NGC 300 from wide-field images taken in the B and V photometric bands at ESO/La Silla. In this paper, we present additional VI data, derive improved periods and mean magnitudes for the variables, and construct period-luminosity relations in the V, I and the reddening-independent (V-I) Wesenheit bands using 58 Cepheid variables with periods between 11 and 90 days. We obtain tightly defined relations, and by fitting the slopes determined for the LMC Cepheids by the OGLE II Project we obtain reddening-corrected distances to the galaxy in all bands. We adopt as our best value the distance derived from the reddening-free Wesenheit magnitudes, which is 26.43 ±\pm 0.04 (random) ±\pm 0.05 (systematic) mag. We argue that our current distance result for NGC 300 is the most accurate which has so far been obtained using Cepheid variables, and that it is largely free from systematic effects due to metallicity, blending, and sample selection. It agrees very well with the recent distance determination from the tip of the red giant branch method obtained from HST data by Butler et al. (2004), and it is consistent with the Cepheid distance to NGC 300 which was derived by Freedman et al. (2001) from CCD photometry of a smaller sample of stars.Comment: Latex, Astronomical Journal in pres

    EUCLID : Dark Universe Probe and Microlensing planet Hunter

    Full text link
    There is a remarkable synergy between requirements for Dark Energy probes by cosmic shear measurements and planet hunting by microlensing. Employing weak and strong gravitational lensing to trace and detect the distribution of matter on cosmic and Galactic scales, but as well as to the very small scales of exoplanets is a unique meeting point from cosmology to exoplanets. It will use gravity as the tool to explore the full range of masses not accessible by any other means. EUCLID is a 1.2m telescope with optical and IR wide field imagers and slitless spectroscopy, proposed to ESA Cosmic Vision to probe for Dark Energy, Baryonic acoustic oscillation, galaxy evolution, and an exoplanet hunt via microlensing. A 3 months microlensing program will already efficiently probe for planets down to the mass of Mars at the snow line, for free floating terrestrial or gaseous planets and habitable super Earth. A 12+ months survey would give a census on habitable Earth planets around solar like stars. This is the perfect complement to the statistics that will be provided by the KEPLER satellite, and these missions combined will provide a full census of extrasolar planets from hot, warm, habitable, frozen to free floating.Comment: 6 pages 3 figures, invited talk in Pathways towards habitable planets, Barcelona, Sept 200
    corecore