904 research outputs found

    Gravitational Waves and GRBs from Tidal Disruption of Stars in the Center of Galaxies

    Get PDF
    Recent measurements of the Chandra satellite have shown that a supermassive black hole of M=2.6×106M⊙M = 2.6 \times 10^{6} M_{\odot} is located in the Galactic Center; it seems probable that, from other observations, this fact is common in the majority of galaxies. On the other hand, GRB explosions are typical phenomenon linked to the galactic dynamics. In the present paper we discuss the possibility that GRBs are tidal disruption of stars by supermassive black holes located in the center of galaxies. This conjecture can be tested by a gravitational wave detector of the class of AURIGA.Comment: 4 pages, 2 figures talk at Gamma Ray Burst Symposium - Santa Fe, New Mexico (USA) September 8-12, 2003. There were added four new references and the entrances of the two figures were written in a more clear wa

    Clustering and gelation of hard spheres induced by the Pickering effect

    Full text link
    A mixture of hard-sphere particles and model emulsion droplets is studied with a Brownian dynamics simulation. We find that the addition of nonwetting emulsion droplets to a suspension of pure hard spheres can lead to both gas-liquid and fluid-solid phase separations. Furthermore, we find a stable fluid of hard-sphere clusters. The stability is due to the saturation of the attraction that occurs when the surface of the droplets is completely covered with colloidal particles. At larger emulsion droplet densities a percolation transition is observed. The resulting networks of colloidal particles show dynamical and mechanical properties typical of a colloidal gel. The results of the model are in good qualitative agreement with recent experimental findings [E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of colloidal particles and two immiscible fluids.Comment: 5 figures, 5 page

    The Response of Test Masses to Gravitational Waves in the Coordinates of a Local Observer

    Get PDF
    The response of laser interferometers to gravitational waves has been calculated in a number of different ways, particularly in the transverse-traceless and the local Lorentz gauges. At first sight, it would appear that these calculations lead to different results when the separation between the test masses becomes comparable to the wavelength of the gravitational wave. In this paper this discrepancy is resolved. We describe the response of free test masses to plane gravitational waves in the coordinate frame of a local observer and show that it acquires contributions from three different effects: the displacement of the test masses, the apparent change in the photon velocity, and the variation in the clock speed of the local observer, all of which are induced by the gravitational wave. Only when taken together do these three effects represent a quantity which is translationally invariant. This translationally-invariant quantity is identical to the response function calculated in the transverse-traceless gauge. We thus resolve the well-known discrepancy between the two coordinates systems, and show that the results found in the coordinate frame of a local observer are valid for large separation between the masses.Comment: 25 pages, 3 figures, Latex2

    Computer simulations of colloidal transport on a patterned magnetic substrate

    Full text link
    We study the transport of paramagnetic colloidal particles on a patterned magnetic substrate with kinetic Monte Carlo and Brownian dynamics computer simulations. The planar substrate is decorated with point dipoles in either parallel or zigzag stripe arrangements and exposed to an additional external magnetic field that oscillates in time. For the case of parallel stripes we find that the magnitude and direction of the particle current is controlled by the tilt angle of the external magnetic field. The effect is reliably obtained in a wide range of ratios between temperature and magnetic permeability. Particle transport is achieved only when the period of oscillation of the external field is greater than a critical value. For the case of zigzag stripes a current is obtained using an oscillating external field normal to the substrate. In this case, transport is only possible in the vertex of the zigzag, giving rise to a narrow stream of particles. The magnitude and direction of the particle current are found to be controlled by a combination of the zigzag angle and the distance of the colloids from the substrate. Metropolis Monte Carlo and Brownian dynamics simulations predict results that are in good agreement with each other. Using kinetic Monte Carlo we find that at high density the particle transport is hindered by jamming.Comment: 8 pages, 9 figure

    Crystallization and gelation in colloidal systems with short-ranged attractive interactions

    Full text link
    We systematically study the relationship between equilibrium and non-equilibrium phase diagrams of a system of short-ranged attractive colloids. Using Monte Carlo and Brownian dynamics simulations we find a window of enhanced crystallization that is limited at high interaction strength by a slowing down of the dynamics and at low interaction strength by the high nucleation barrier. We find that the crystallization is enhanced by the metastable gas-liquid binodal by means of a two-stage crystallization process. First, the formation of a dense liquid is observed and second the crystal nucleates within the dense fluid. In addition, we find at low colloid packing fractions a fluid of clusters, and at higher colloid packing fractions a percolating network due to an arrested gas-liquid phase separation that we identify with gelation. We find that this arrest is due to crystallization at low interaction energy and it is caused by a slowing down of the dynamics at high interaction strength. Likewise, we observe that the clusters which are formed at low colloid packing fractions are crystalline at low interaction energy, but glassy at high interaction energy. The clusters coalesce upon encounter.Comment: 8 pages, 8 figure

    Evidence from multivariate morphometric study of the quercus pubescens complex in southeast Italy

    Get PDF
    The name Quercus pubescens s.l. encompasses a complex of deciduous oak taxa with mainly southeastEuropean distribution and a large ecological niche. As the easternmost region of Italy, Apulia is rather isolated from a geographical and physiographical viewpoint and counts the highest number of oak species (10). In the taxonomic and phytosociological literature, the occurrence of several species belonging to the Quercus pubescens collective group is reported for this region. In order to verify if different sets of morphological characters are associated with different taxa, 24 populations of Quercus pubescens s.l. located in different ecological-geographical areas of Apulia were sampled. A total of 367 trees, 4254 leaves and 1120 fruits were collected and morphologically analysed. Overall, 25 morphological characters of oak leaves and fruits were statistically treated using both univariate and multivariate analysis. Nested ANOVA showed that leaves collected from a single tree exhibited a degree of morphological variability higher than that observed when comparing leaves coming from different trees of the same population and from different trees of different populations as well. Almost all the morphological characters analysed exhibited a continuous trend of variation so that none of them can be used as a character to discriminate between populations. Only leaf and fruit “size” and fruit petiole length emerged as slightly discriminating characters. Our results suggest that it is unlikely that more than one species belonging to the Quercus pubescens complex occurs in the Apulia region. Comparison between the Apulian populations and a genetically pure Q. pubescens population coming from a different area (the Molise region) strengthened the assumption as to the existence of a single species that can provisionally be classified under the name of Q. pubescens s.

    A comparison between matter wave and light wave interferometers for the detection of gravitational waves

    Get PDF
    We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves

    Electromagnetic waves in gravitational wave spacetimes

    Get PDF
    We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field AÎĽ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailled examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007)

    The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics

    Get PDF
    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the `self' component having only one particle, the `distinct' component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy and arrested dynamics at high densities.Comment: Submitted to Journal of Chemical Physic
    • …
    corecore