38 research outputs found

    Revisiting properties of CaCoSinO2n+2. Crystal and electronic structure

    Get PDF
    In a public space there are several reports of materials with general stoichiometry CaCoSinO2n+2. Pyroxene CaCoSi2O6 is probably the best-known representative for n = 2 but not much is known about materials with n = 3 and n = 4. In this study, attempts were carried out to synthesize those phantom materials and it was found that they do not exist as a single phase. A quantitative XRD analysis revealed that their chemical composition is correct but the formula should be written as CaCoSi2O6 + (n-2)SiO2. Similar qualitative conclusions were drawn from investigation of magnetic (DC magnetometry) and electronic properties using X-ray Photoelectron Spectroscopy (XPS) and Si K edge X-ray Absorption Spectroscopy (XAS). Additionally, the DFT ab initio calculations were carried out to obtain electronic signature from band structure of CaCoSi2O6. The apparent influence of the excess of SiO2 on magnetic properties of this “series” can be understood in terms of presence and suppression of secondary phases like Ca2CoSi2O7, which form when the starting materials are not homogenized properly. Addition of surplus SiO2 suppresses their formation leaving clear signature from CaCoSi2O6, which also can be synthesized from stoichiometric mixture using proper techniques

    The effective increase in atomic scale disorder by doping and superconductivity in Ca3Rh4Sn13

    Get PDF
    A comprehensive study of the electronic structure, thermodynamic and electrical transport properties reveals the existence of inhomogeneous superconductivity due to structural disorder in Ca3Rh4Sn13 doped with La (Ca3−x La x Rh4Sn13) or Ce (Ca3−x Ce x Rh4Sn13) with superconducting critical temperatures T*c higher than those (T c ) observed in the parent compounds. The T − x diagrams and the entropy S(x) T isotherms document well the relation between the degree of atomic disorder and separation of the high-temperature T*c and T c -bulk phases. In these dirty superconductors, with the mean free path much smaller than the coherence length, the Werthamer–Helfand–Hohenber theoretical model does not fit well the H c2(T) data. We demonstrate that this discrepancy can result from the presence of strong inhomogeneity or from two-band superconductivity in these systems. Both the approaches very well describe the H − T dependencies, but the present results as well as our previous studies give stronger arguments for the scenario based on the presence of nanoscopic inhomogeneity of the superconducting state. A comparative study of La-doped and Ce-doped Ca3Rh4Sn13 showed that in the disordered Ca3−x Ce x Rh4Sn13 alloys the presence of spin-glass effects is the cause of the additional increase of T*c in respect to the critical temperatures of disordered Ca3−x La x Rh4Sn13. We also revisited the nature of structural phase transition at T*~130÷170 K and documented that there might be another precursor transition at higher temperatures. Raman spectroscopy and thermodynamic properties suggest that this structural transition may be associated with a CDW-type instability

    Hybrydowa elektrociepłownia na biomasę dla krajów europejskich. Koncepcja hybrydowej elektrowni zasilanej biomasą przy współpracy Polski i Niemiec

    No full text
    Artykuł opisuje koncepcje elektrociepłowni zasilanej biomasą, która może zostać wykorzystana w krajach Unii Europejskiej w celu sprostania nowym przepisom oraz w celu ochrony środowiska. Projekt obejmuje wykorzystanie dodatkowo energie słoneczną oraz wiatrową, jako komplementarne źródła energii odnawialnej w celu zmniejszenia zasobów biomasy niezbędnych do produkcji energii elektrycznej. Przeprowadzone zostały badania dla przykładowej jednostki zasilanej słomą, która będzie zlokalizowana w miejscowości Daszyna, w centralnej Polsce
    corecore