387 research outputs found

    Space missions to detect the cosmic gravitational-wave background

    Get PDF
    It is thought that a stochastic background of gravitational waves was produced during the formation of the universe. A great deal could be learned by measuring this Cosmic Gravitational-wave Background (CGB), but detecting the CGB presents a significant technological challenge. The signal strength is expected to be extremely weak, and there will be competition from unresolved astrophysical foregrounds such as white dwarf binaries. Our goal is to identify the most promising approach to detect the CGB. We study the sensitivities that can be reached using both individual, and cross-correlated pairs of space based interferometers. Our main result is a general, coordinate free formalism for calculating the detector response that applies to arbitrary detector configurations. We use this general formalism to identify some promising designs for a GrAvitational Background Interferometer (GABI) mission. Our conclusion is that detecting the CGB is not out of reach.Comment: 22 pages, 7 figures, IOP style, References Adde

    The response of interferometric gravitational wave detectors

    Full text link
    The derivation of the response function of an interferometric gravitational wave detector is a paradigmatic calculation in the field of gravitational wave detection. Surprisingly, the standard derivation of the response wave detectors makes several unjustifiable assumptions, both conceptual and quantitative, regarding the coordinate trajectory and coordinate velocity of the null geodesic the light travels along. These errors, which appear to have remained unrecognized for at least 35 years, render the "standard" derivation inadequate and misleading as an archetype calculation. Here we identify the flaws in the existing derivation and provide, in full detail, a correct derivation of the response of a single-bounce Michelson interferometer to gravitational waves, following a procedure that will always yield correct results; compare it to the "standard", but incorrect, derivation; show where the earlier mistakes were made; and identify the general conditions under which the "standard" derivation will yield correct results. By a fortuitous set of circumstances, not generally so, the final result is the same in the case of Minkowski background spacetime, synchronous coordinates, transverse-traceless gauge metric perturbations, and arm mirrors at coordinate rest.Comment: 10 pages, one figure, as accepted to PR

    A two-scalar model for a small but nonzero cosmological constant

    Get PDF
    We revisit a model of the two-scalar system proposed previously for understanding a small but nonzero cosmological constant. The model provides solutions of the scalar-fields energy ρs\rho_s which behaves truly constant for a limited time interval rather than in the way of tracker- or scaling-type variations. This causes a mini-inflation, as indicated by recent observations. As another novel feature, ρs\rho_s and the ordinary matter density ρm\rho_m fall off always side by side, but interlacing, also like (time)−2^{-2} as an overall behavior in conformity with the scenario of a decaying cosmological constant. A mini-inflation occurs whenever ρs\rho_s overtakes ρm\rho_m, which may happen more than once, shedding a new light on the coincidence problem. We present a new example of the solution, and offer an intuitive interpretation of the mechanism of the nonlinear dynamics. We also discuss a chaos-like nature of the solution.Comment: 9 pages plus 7 figure

    Position paper of the European Academy of Allergy and Clinical Immunology

    Get PDF
    Rhinitis is a common problem in childhood and adolescence and impacts negatively on physical, social and psychological well-being. This position paper, prepared by the European Academy of Allergy and Clinical Immunology Taskforce on Rhinitis in Children, aims to provide evidence-based recommendations for the diagnosis and therapy of paediatric rhinitis. Rhinitis is characterized by at least two nasal symptoms: rhinorrhoea, blockage, sneezing or itching. It is classified as allergic rhinitis, infectious rhinitis and nonallergic, noninfectious rhinitis. Similar symptoms may occur with other conditions such as adenoidal hypertrophy, septal deviation and nasal polyps. Examination by anterior rhinoscopy and allergy tests may help to substantiate a diagnosis of allergic rhinitis. Avoidance of relevant allergens may be helpful for allergic rhinitis (AR). Oral and intranasal antihistamines and nasal corticosteroids are both appropriate for first-line AR treatment although the latter are more effective. Once-daily forms of corticosteroids are preferred given their improved safety profile. Potentially useful add-on therapies for AR include oral leukotriene receptor antagonists, short bursts of a nasal decongestant, saline douches and nasal anticholinergics. Allergen-specific immunotherapy is helpful in IgE-mediated AR and may prevent the progression of allergic disease. There are still a number of areas that need to be clarified in the management of rhinitis in children and adolescents.publishersversionpublishe

    Dilaton Contributions to the Cosmic Gravitational Wave Background

    Full text link
    We consider the cosmological amplification of a metric perturbation propagating in a higher-dimensional Brans-Dicke background, including a non trivial dilaton evolution. We discuss the properties of the spectral energy density of the produced gravitons (as well as of the associated squeezing parameter), and we show that the present observational bounds on the graviton spectrum provide significant information on the dynamical evolution of the early universe.Comment: 26 pages, plain tex (to appear in Phys.Rev.D, 1 fig available from the authors upon req.

    Quintessence, scalar-tensor theories and non-Newtonian gravity

    Get PDF
    We discuss some of the issues which we encounter when we try to invoke the scalar-tensor theories of gravitation as a theoretical basis of quintessence. One of the advantages of appealing to these theories is that they allow us to implement the scenario of a ``decaying cosmological constant,'' which offers a reasonable understanding of why the observed upper bound of the cosmological constant is smaller than the theoretically natural value by as much as 120 orders of magnitude. In this context, the scalar field can be a candidate of quintessence in a broader sense. We find, however, a serious drawback in the prototype Brans-Dicke model with Λ\Lambda added; a static universe in the physical conformal frame which is chosen to have constant particle masses. We propose a remedy by modifying the matter coupling of the scalar field taking advantage of scale invariance and its breakdown through quantum anomaly. By combining this with a conjecture on another cosmological constant problem coming from the vacuum energy of matter fields, we expect a possible link between quintessence and non-Newtonian gravity featuring violation of Weak Equivalence Principle and intermediate force range, likely within the experimental constraints. A new prediction is also offered on the time-variability of the gravitational constant.Comment: 12 pages LaTex including 1 eps figur

    STEP: Satellite Test of the Equivalence Principle. Report on the phase A study

    Get PDF
    During Phase A, the STEP Study Team identified three types of experiments that can be accommodated on the STEP satellite within the mission constraints and whose performance is orders of magnitude better than any present or planned future experiment of the same kind on the ground. The scientific objectives of the STEP mission are to: test the Equivalence Principle to one part in 10(exp 17), six orders of magnitude better than has been achieved on the ground; search for a new interaction between quantum-mechanical spin and ordinary matter with a sensitivity of the mass-spin coupling constant g(sub p)g(sub s) = 6 x 10(exp -34) at a range of 1 mm, which represents a seven order-of-magnitude improvement over comparable ground-based measurements; and determine the constant of gravity G with a precision of one part in 10(exp 6) and to test the validity of the inverse square law with the same precision, both two orders of magnitude better than has been achieved on the ground

    On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array

    Get PDF
    We search for the signature of an isotropic stochastic gravitational-wave background in pulsar timing observations using a frequency-domain correlation technique. These observations, which span roughly 12 yr, were obtained with the 64-m Parkes radio telescope augmented by public domain observations from the Arecibo Observatory. A wide range of signal processing issues unique to pulsar timing and not previously presented in the literature are discussed. These include the effects of quadratic removal, irregular sampling, and variable errors which exacerbate the spectral leakage inherent in estimating the steep red spectrum of the gravitational-wave background. These observations are found to be consistent with the null hypothesis, that no gravitational-wave background is present, with 76 percent confidence. We show that the detection statistic is dominated by the contributions of only a few pulsars because of the inhomogeneity of this data set. The issues of detecting the signature of a gravitational-wave background with future observations are discussed.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRA

    Probing seed black holes using future gravitational-wave detectors

    Full text link
    Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band that lies between the sensitivity bands of existing ground-based detectors and the planned space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA). However, there are proposals for more advanced detectors that will bridge this gap, including the third generation ground-based Einstein Telescope and the space-based detector DECIGO. In this paper we demonstrate that such future detectors should be able to detect gravitational waves produced by the coalescence of the first generation of light seed black-hole binaries and provide information on the evolution of structure in that era. These observations will be complementary to those that LISA will make of subsequent mergers between more massive black holes. We compute the sensitivity of various future detectors to seed black-hole mergers, and use this to explore the number and properties of the events that each detector might see in three years of observation. For this calculation, we make use of galaxy merger trees and two different seed black hole mass distributions in order to construct the astrophysical population of events. We also consider the accuracy with which networks of future ground-based detectors will be able to measure the parameters of seed black hole mergers, in particular the luminosity distance to the source. We show that distance precisions of ~30% are achievable, which should be sufficient for us to say with confidence that the sources are at high redshift.Comment: 14 pages, 6 figures, 2 tables, accepted for proceedings of 13th GWDAW meetin

    The Behaviour Of Cosmological Models With Varying-G

    Get PDF
    We provide a detailed analysis of Friedmann-Robertson-Walker universes in a wide range of scalar-tensor theories of gravity. We apply solution-generating methods to three parametrised classes of scalar-tensor theory which lead naturally to general relativity in the weak-field limit. We restrict the parameters which specify these theories by the requirements imposed by the weak-field tests of gravitation theories in the solar system and by the requirement that viable cosmological solutions be obtained. We construct a range of exact solutions for open, closed, and flat isotropic universes containing matter with equation of state p≀13ρp\leq \frac{1}{3}\rho and in vacuum. We study the range of early and late-time behaviours displayed, examine when there is a `bounce' at early times, and expansion maxima in closed models.Comment: 58 pages LaTeX, 6 postscript figures, uses eps
    • 

    corecore