2,619 research outputs found

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    Tensorial perturbations in the bulk of inflating brane worlds

    Get PDF
    In this paper we consider the stability of some inflating brane-world models in quantum cosmology. It is shown that whereas the singular model based on the construction of inflating branes from Euclidean five-dimensional anti-de Sitter space is unstable to tensorial cosmological perturbations in the bulk, the nonsingular model which uses a five-dimensional asymptotically anti-de Sitter wormhole to construct the inflating branes is stable to these perturbations.Comment: 4 pages, RevTex, to appear in Phys. Rev.

    A microscopic NN to NN*(1440) potential

    Full text link
    By means of a NN to NN*(1440) transition potential derived in a parameter-free way from a quark-model based NN potential, we determine simultaneously the πNN(1440)\pi NN^*(1440) and σNN(1440)\sigma NN^*(1440) coupling constants. We also present a study of the target Roper excitation diagram contributing to the p(d,d)p(d,d') reaction.Comment: Talk presented at the Fourth International Conference on Perspectives in Hadronic Physics (ICTP, Trieste, Italy, May 2003). To appear in EPJA. 6 pages, 9 figures, needs svepj.clo and svjour.cl

    Anti-de Sitter wormhole kink

    Get PDF
    The metric describing a given finite sector of a four-dimensional asymptotically anti-de Sitter wormhole can be transformed into the metric of the time constant sections of a Tangherlini black hole in a five-dimensional anti-de Sitter spacetime when one allows light cones to tip over on the hypersurfaces according to the conservation laws of an one-kink. The resulting kinked metric can be maximally extended, giving then rise to an instantonic structure on the euclidean continuation of both the Tangherlini time and the radial coordinate. In the semiclassical regime, this kink is related to the existence of closed timelike curves.Comment: 10 pages, to appear in IJMP

    A graceful multiversal link of particle physics to cosmology

    Get PDF
    In this paper we work out a multiverse scenario whose physical characteristics enable us to advance the following the conjecture that whereas the physics of particles and fields is confined to live in the realm of the whole multiverse formed by finite-time single universes, that for our observable universe must be confined just in one of the infinite number of universes of the multiverse when such a universe is consistently referred to an infinite cosmic time. If this conjecture is adopted then some current fundamental problems that appear when one tries to make compatible particle physics and cosmology- such as that for the cosmological constant, the arrow of time and the existence of a finite proper size of the event horizon- can be solved.Comment: 10 pages, LaTe

    Kinematics of gas and stars in circumnuclear star-forming regions of early type spirals

    Full text link
    (Abbr.) We present high resolution (R~20000) spectra in the blue and the far red of cicumnuclear star-forming regions (CNSFRs) in three early type spirals (NGC3351, NGC2903 and NGC3310) which have allowed the study of the kinematics of stars and ionized gas in these structures and, for the first time, the derivation of their dynamical masses for the first two. In some cases these regions, about 100 to 150 pc in size, are seen to be composed of several individual star clusters with sizes between 1.5 and 4.9 pc estimated from Hubble Space Telescope (HST) images. The stellar dispersions have been obtained from the Calcium triplet (CaT) lines at λλ\lambda\lambda 8494,8542,8662 \AA, while the gas velocity dispersions have been measured by Gaussian fits to the Hβ\beta and [OIII] λλ\lambda\lambda 5007 \AA lines on the high dispersion spectra. Values of the stellar velocity dispersions are between 30 and 68 km/s. We apply the virial theorem to estimate dynamical masses of the clusters, assuming that systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107^7 to 108^8 solar masses for the whole CNSFRs. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km/s with the Hβ\beta emission lines being narrower than both the stellar lines and the [OIII] λλ\lambda\lambda 5007 \AA lines. The twice ionized oxygen, on the other hand, shows velocity dispersions comparable to those shown by stars, in some cases, even larger. We have found indications of the presence of two different kinematical components in the ionized gas of the regions...Comment: 4 pages, proceeding of the meeting "Young massive star clusters - Initial conditions and environments", Granada, Spain, 200

    Decoherence in an accelerated universe

    Get PDF
    In this paper we study the decoherence processes of the semiclassical branches of an accelerated universe due to their interaction with a scalar field with given mass. We use a third quantization formalism to analyze the decoherence between two branches of a parent universe caused by their interaction with the vaccum fluctuations of the space-time, and with other parent unverses in a multiverse scenario.Comment: 11 pages, 2 figure
    corecore