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Tensorial perturbations in the bulk of inflating brane worlds
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In this paper we consider the stability of some inflating brane-world models in quantum cosmology. It is
shown that, whereas the singular model based on the construction of inflating branes from Euclidean five-
dimensional anti–de Sitter space is unstable to tensorial cosmological perturbations in the bulk, the nonsingular
model which uses a five-dimensional asymptotically anti–de Sitter wormhole to construct the inflating branes
is stable to these perturbations.
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I. INTRODUCTION

There has recently been a lot of interest in inflating bra
worlds which are obtained by gluing at a given slice tw
copies of either a truncated anti–de Sitter or regular wo
hole spacetime in five dimensions@1,2#. These brane worlds
can in both cases evolve along cosmological time follow
the conventional pattern of most cosmic branes~i.e. the evo-
lution being described by a Friedmann equation which sho
an early dependence on the square of the energy density@3#!
after undergoing a primordial period of pure de Sitter infl
tion. It is then clear that the four branes resulting in the
models are by themselves stable to all types of cosmolog
perturbations taking placein the branes@4#. However, no
investigation has yet been undertaken on the stability of
bulk under the same type of perturbations in the above
models. In this paper we shall study in some detail this
portant missing topic in the case in which the cosmologi
perturbations originally considered by Lifshitz and Khalat
kov @5# are extended to a five-dimensional manifold@6#. The
main result of this study is that, whereas the construct
tained from the five-dimensional anti–de Sitter space is
stable to tensorial cosmological perturbations, the const
which is obtained from a regular five-dimensional asympto
cally anti–de Sitter wormhole is stable to these perturbatio

We can outline the paper as follows. In Sec. II we disc
the instabilities present in the instanton constructed from
five-dimensional anti–de Sitter space. Section III contain
calculation which leads to the conclusion that, whereas
four-dimensional asymptotically anti–de Sitter shows ten
rial instabilities, the five-dimensional asymptotically anti–
Sitter wormhole bulk of a four-dimensional brane is stable
tensorial perturbations. We conclude in Sec. IV.

II. INSTABILITIES OF DE SITTER BRANE WORLDS

The scale factor of the five-dimensional Garriga-Sas
model for an inflating brane world, which describes a spa
time with topologyR3S4, i.e., denoting the metric on th
unit four-sphere bydV4

2,

ds25dr21a~r !2dV4
2 ,

is given by@1#
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a~r !5,sinh~r /, !, ~2.1!

where,5(26/L5)1/2 is the anti–de Sitter radius andr is the
extra fifth coordinate. It was pointed out in Refs.@1,2# that
this solution may lead to a problem. The problem is that
nonvanishing components of the five-dimensional Weyl t
sor Cnrs

m give rise to the invariant quantityC2}a(r )24

which may vanish atr 50 if we take fora(r ) solution~2.1!.
This shortcoming was circumvented by using the sa
spacetime topology as in the Garriga-Sasaki model, but f
scale factor given by

a~r !5SAb cosh~2AL5r !21

2L D 1/2

~2.2!

~with b5114A2L5) while still producing the same de Sit
ter inflating brane-world model.

In this paper it will be seen that the solution used
Garriga-Sasaki is unstable in yet another respect, that of
gravitational-wave perturbations on the bulk, and that us
again a solution such as Eq.~2.2! also solves this new prob
lem for constructing an inflating de Sitter brane-world sc
nario. This can be explicitly shown by considering th
Lifshitz-Khalatnikov tensorial cosmological perturbation
@5# generalized to a five-dimensional Friedmann-Roberts
Walker manifold@6# for the scale factors given by Eqs.~2.1!
and ~2.2!. Expanding in five-dimensional tensor harmoni
and taking for the most general metric perturbations@6#

hab5l~h!Pab1m~h!Qab1s~h!Sab1n~h!Hab ,

wherePab , Qab , Sab , andHab are tensor harmonics de
rived from the scalar, vector, and tensor harmonics defi
on the four-sphere@6#, and the coefficientsl(h), m(h),
s(h), andn(h) are functions of the conformal extra coo
dinateh5*dr/a(r ). The perturbations originated from th
tensorial five-dimensional gravitational-wave perturbatio
are given by coefficientn(h) which satisfies a differentia
equation which in the Lorentzian manifold reads@6#

n913
a~h!8

a~h!
n81,~,13!n50, ~2.3!
©2003 The American Physical Society09-1
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with 85d/dh, whereh is again the conformal coordinat
associated with the extra fifth dimensionr, i.e., h
5*dr/a(r ), with a(r ) given by Eq.~2.2! for the present
case. What we shall investigate in this paper is how tenso
perturbations on the four-sphereV4, represented by the co
efficientn, evolve along either the ‘‘Lorentzian’’ or the ‘‘Eu
clidean’’ conformal fifth coordinate for a generic metric

ds25a~h!2~6dh21dV4
2!,

with the upper sign standing for the Euclidean manifold a
the lower one for the Lorentzian manifold.

In the Euclidean case, which corresponds to the me
used by Garriga and Sasaki@1#, we have

n913
a~h!8

a~h!
n85,~,13!n, ~2.4!

where

h5h* 1
1

2
1 lnS cosh~AL5r !21

cosh~AL5r !11
D , ~2.5!

in which h* is an integration constant. The scale factor e
pressed in terms of the conformal radial coordinateh be-
comes then

a~h!5
1

AL5 sinh~h2h* !
. ~2.6!

The differential equation~2.4! can therefore be written as

n923 coth~h2h* !n85,~,13!n. ~2.7!

We note that even for the zero mode,50 there is an insta-
bility, as the solution to this equation reads

n5n01n08@
1
3 cosh3~h2h* !2cosh~h2h* !#, ~2.8!

in which n0 andn08 are integration constants. It follows tha
for h→` ~i.e., asr→0) n blows up. In the correspondin
Lorentzian case this mode would oscillate along the time
extra dimension. The conclusion thus obtained is that
five-dimensional bulk is unstable for solution~2.1! or ~2.6!.
The stability of the generalizedd-dimensional Garriga-
Sasaki scenario can also be analyzed following a sim
treatment. Since the Garriga-Sasaki metric for an arbitr
number of dimensionsd is found to be tractable@7# and
expressible as

ds25a~h!2~6dh21dVd21
2 !,

with a(h) given again by Eq.~2.6! for a d-dimensional cos-
mological constantLd , the differential equation for tensoria
perturbationsn @6# for the Euclidean case becomes

n92~d22!cotanh~h2h* !n85,~,1d22!n.

For ,50, we now obtain
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n85n08 sinhd22~h2h* !,

with n08 an integration constant. It follows that for,50 the
coefficientn will be generally given as polynomials of ce
tain powers,p<d, of cosh(h2h* ) and sinh(h2h* ) and
some of their mutual products for oddd, and as similar~not
identical! polynomials plus a termp(h2h* ) ~with p a con-
stant! for evend. In the Lorentzian framework, the polyno
mials are similarly given in terms of circular rather than h
perbolic functions. Then we see that the above conclusion
d55 can be extended for any arbitrary dimensiond.

III. STABILITY OF ASYMPTOTICALLY
ANTI –DE SITTER WORMHOLES

We shall show now that the above kind of instabili
problem is no longer present in the case where we use s
tion ~2.2!. When we express such a solution in terms of t
conformal radial extra coordinate

b1/4h5b1/4h*

1FFarcsinAAb~cosh~2AL5r !21!

Ab cosh~2AL5r !21
,R~b!G ,

~3.1!

with

R~b!5AAb11

2Ab
,

and where againh* is an integration constant andF is the
elliptic integral of the first class@7#, the scale factor can be
written as

a~h!5gnc~b1/4hum!, ~3.2!

in which we have absorbed the constanth* into h,

g5
Ab21

2L5
, ~3.3!

where nc(xum) is an elliptic function with parameterm @7#.
Then, denotingx5b1/4h, we have for the Euclidean differ
ential equation for the coefficientn,

n913b1/4
sn~xum!dn~xum!

cn~xum!
n85,~,13!n, ~3.4!

with sn, dn, and cn being elliptic functions as well@7#. Now,
for the zero mode,50 we obtain the analytical solution

n5n01
n08

2mb1/4H sn~xum!dn~xum!

2
m1

Am
arcsin~Amsn~xum!!J , ~3.5!
9-2
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with m1512m. It follows that thoughn oscillates along the
entire directionh, it does not diverge anywhere on that d
rection, so that, contrary to what happens for solution~2.1!,
the five-dimensional bulk for solution~2.2! appears to be
stable to these zero-mode tensorial perturbations. It is w
noting, moreover, that in the Lorentzian case where the
lution is given in terms of the elliptic function cn51/nc,

a~h!5g cn~b1/4hum1!,

the solution for the zero mode for coefficientn is the same as
in Eq. ~3.5!, but with parameterm replaced for parameterm1
and vice versa. In this way, though the,50 gravitational-
wave mode is not damped, neither does it increase w
Lorentzian timeh.

For ,Þ0 the differential equation forn can be rewritten
as

@nc~xum!n8#85,~,13!nc3~xum!n ~3.6!

in the Euclidean description and as

@cn~xum1!n8#85,~,13!cn3~xum1!n ~3.7!

in the Lorentzian description, withx5b1/4h in both cases.
We have been unable to find an analytical solution in clo
form for these differential equations, so that we will consid
the limiting behaviors ofn as b1/4h→0,2K, . . . andb1/4h
→K,3K, . . . , whereK is the complete elliptic integral@8#.
In the former case for the Euclidean solution one can
proximaten to be given by

n.n0 exp@A,~,13!h#, ~3.8!

and in the latter Euclidean casen tends to generally finite
constant values. Thus, at least forh intervals running up to
finite numbers of complete elliptic integrals, we see th
there is no instability arising from these,Þ0 modes. For the
Lorentzian description nearb1/4h→0,2K, . . . , if we choose
for the constantA2 the particular valueA25175/(324L5),
we obtain a solution in terms of the ultraspherical Geg
bauer polynomials@8#,

n}C,
3/2~h!, ~3.9!

which tends either to vanish for odd, or to a finite nonzero
constant

n5~21!,/2

GS 3

2
1

,

2D
GS 3

2D S 3

2D ,

for even,, ash goes into these limiting values. Forb1/4h
→K,3K, . . . , theLorentzian solution would again tend to
generally finite constant. Therefore, gravitational-wave p
turbations do not induce any instability in the fiv
dimensional bulk for our nonsingular solution.
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It is rather interesting to realize that the stability to tens
rial perturbations of formally the same solutions for the sc
factor will critically depend on the number of dimensions
the spacetime we deal with. In fact, there exist fou
dimensional asymptotically anti–de Sitter Euclidean wor
holes@9,10# which are characterized by a Robertson-Walk
metric and a scale factor which is exactly the same as
given by Eq.~2.2! for a cosmological constantL4[L. Such
wormholes are usually obtained as the Euclidean solu
that corresponds to the case of a massless scalar field w
is conformally coupled to the Hilbert-Einstein gravity plus
cosmological constantL @9,10#. However, even for the cas
,50, the solution appears to be unstable to the same kin
tensorial perturbations to which solution~2.2! is in fact
stable. In this case, the differential equation is modified to

s912b1/4
sn~xum!dn~xum!

cn~xum!
s850. ~3.10!

The solution to Eq.~3.10! is

s5s01
s08

b1/4m
$E@A~b1/4h!,m#2m1b1/4h%, ~3.11!

whereE is the elliptic integral of the second kind@8#, andA
is the amplitude of the corresponding elliptic function@8#.
We can readily check that in fact this solution diverges
h→`. The counterpart for the Lorentzian baby universe w
nevertheless be stable to gravitational-wave perturbat
and corresponds to the solution

s5s01
s08

b1/4m1

$E@A~b1/4hL!,m1#2mb1/4hL%,

~3.12!

with hL a compact time coordinate.

IV. CONCLUSIONS

The conclusions of this paper are that, whereas
Garriga-Sasaki instanton based on a trivial extension to
or arbitrarily higher dimensions than the usual fou
dimensional anti–de Sitter instanton and the kind of fo
dimensional Euclidean asymptotically anti–de Sitter wor
hole we have just discussed are unstable to the tens
gravitational-wave-like perturbations, the baby universe
sociated with that wormhole and the nonsingular fiv
dimensional instanton which was used in@2# to replace the
Garriga-Sasaki solution@1# are both stable to the Lorentzia
counterpart of such perturbations. A caveat to these con
sions should be mentioned. It is that, since the tensorial
stability of the five-dimensional anti–de Sitter instant
takes place asr→0, this instability would coincide with the
other kind of instability identified for that solution whic
arises from the invariant Weyl tensorC2 also at r 50.
Whether or not these two apparently distinct kinds of ins
bilities share a common ultimate origin is to be investigat
We note, moreover, that the presence of such instabili
9-3
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appears to be independent of the value ofr at which the
brane is placed. On the other hand, the five-dimensio
wormhole instanton, and hence the brane constructed fro
is stable as one approaches the limiting values ofr at both
r 50 andr 5`.
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