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Tensorial perturbations in the bulk of inflating brane worlds
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(Received 1 July 2003; published 23 October 2003

In this paper we consider the stability of some inflating brane-world models in quantum cosmology. It is
shown that, whereas the singular model based on the construction of inflating branes from Euclidean five-
dimensional anti—de Sitter space is unstable to tensorial cosmological perturbations in the bulk, the nonsingular
model which uses a five-dimensional asymptotically anti—de Sitter wormhole to construct the inflating branes
is stable to these perturbations.
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l. INTRODUCTION a(ry=4£sinh(r/¢), 2.1

There has recently been a lot of interest in inflating branghere = (—6/A5)2is the anti—de Sitter radius amds the
worlds which are obtained by gluing at a given slice WO gyirg fifth coordinate. It was pointed out in Refd,2] that
copies of either a truncated anti—de Sitter or regular wormgis sojution may lead to a problem. The problem is that the
hole.spgct(re]tlme in five Id|meInS|0['35,2]- Tlhes_e ?;@ne ¥vc|)|rld§ nonvanishing components of the five-dimensional Wey! ten-
can in both cases evolve along cosmological time followings . =« give rise to the invariant quantit@2eca(r)-*
the conventional pattern of most cosmic brafies the evo- vor 9 9 L eralr)

- ) : ) . ; which may vanish at =0 if we take fora(r) solution(2.1).
lution being described by a Friedmann equation which show%his sho%coming was circumvented (b3)/ using the same

an early depe.ndence on th? square of the energy .dégs)ity spacetime topology as in the Garriga-Sasaki model, but for a
after undergoing a primordial period of pure de Sitter |ana—Scale factor given by

tion. It is then clear that the four branes resulting in these

models are by themselves stable to all types of cosmological 12
perturbations taking placa the braneg4]. However, no a(r)= VB costi2yAsr) -1 2.2
investigation has yet been undertaken on the stability of the 2A ’

bulk under the same type of perturbations in the above two
models. In this paper we shall study in some detail this im+with 3= 1+4A2A ;) while still producing the same de Sit-
portant missing topic in the case in which the cosmologicater inflating brane-world model.
perturbations originally considered by Lifshitz and Khalatni- |n this paper it will be seen that the solution used by
kov [5] are extended to a five-dimensional maniffd. The  Garriga-Sasaki is unstable in yet another respect, that of the
main result of this study is that, whereas the construct obgrayitational-wave perturbations on the bulk, and that using
tained from the five-dimensional anti—de Sitter space is Unagain a solution such as E@.2) also solves this new prob-
stable to tensorial cosmological perturbations, the construgem for constructing an inflating de Sitter brane-world sce-
which is obtained from a regular five-dimensional asymptoti-nario. This can be explicitly shown by considering the
cally anti—de Sitter wormhole is stable to these perturbations. jfshitz-Khalatnikov tensorial cosmological perturbations
We can outline the paper as follows. In Sec. Il we discus§s) generalized to a five-dimensional Friedmann-Robertson-
the instabilities present in the instanton constructed from thgvalker manifold[6] for the scale factors given by Eq&.1)
five-dimensional anti—de Sitter space. Section Il contains and (22) Expanding in five-dimensional tensor harmonics

calculation which leads to the conclusion that, whereas thgnd tak|ng for the most genera| metric perturbatim]]s
four-dimensional asymptotically anti—de Sitter shows tenso-

rial instabilities, the five-dimensional asymptotically anti—de h =\N(7)P .+ + S .+ H
Sitter wormhole bulk of a four-dimensional brane is stable to ap=NPapt (1) Qupt 0(0)Sapt v(n)Hag,

tensorial perturbations. We conclude in Sec. IV. .
P whereP .z, Q,z5, S.s, andH gz are tensor harmonics de-

rived from the scalar, vector, and tensor harmonics defined
Il. INSTABILITIES OF DE SITTER BRANE WORLDS on the four-spherd6], and the coefficients\(7), w(7),

The scale factor of the five-dimensional Garriga-SasakP (7)., and»(7) are functions of the conformal extra coor-
model for an inflating brane world, which describes a spacedinate 7= J/dr/a(r). The perturbations originated from the
time with topologyRXx S*, i.e., denoting the metric on the tensorial five-dimensional gravitational-wave perturbations
unit four-sphere bydQ2 are given by coefficieni(7) which satisfies a differential

equation which in the Lorentzian manifold reddg
ds?=dr?+a(r)2d02,

,,+3a( 7)’

is given by[1] v a(»n)

v'+€(£+3)v=0, (2.3
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with "=d/d», where# is again the conformal coordinate v =vjsinf=2(n—1,),

associated with the extra fifth dimension i.e., »

=Jdr/a(r), with a(r) given by Eq.(2.2) for the present with v} an integration constant. It follows that fér=0 the
case. What we shall investigate in this paper is how tensoriadoefficient» will be generally given as polynomials of cer-
perturbations on the four-sphefk,, represented by the co- tain powers,p<d, of cosh¢y—7,) and sinhg—7,) and
efficient», evolve along either the “Lorentzian” or the “Eu- some of their mutual products for odtj and as similatnot

clidean” conformal fifth coordinate for a generic metric identicab po|yn0mia|s p|us a terrm-(»,]_ 7’*) (W|th 7T a con-
2 2 2 5 stan} for evend. In the Lorentzian framework, the polyno-
ds’=a(7)"(+d7n"+dQ3), mials are similarly given in terms of circular rather than hy-

erbolic functions. Then we see that the above conclusion for

with the upper sign standing for the Euclidean manifold an —5 can be extended for any arbitrary dimensibn

the lower one for the Lorentzian manifold.
In the Euclidean case, which corresponds to the metric

used by Garriga and SasdHi], we have Ill. STABILITY OF ASYMPTOTICALLY

ANTI -DE SITTER WORMHOLES

V,,+3a( 7))’ v =€0(€+3)v, (2.4) We shall show now that Fhe above kind of instability
a(n) problem is no longer present in the case where we use solu-
tion (2.2). When we express such a solution in terms of the

where conformal radial extra coordinate

cosh{VAsr)—1 U4, — gl
n:n*+§+ln<%), (2.5 Bm= B
cos r
) +F| arcsin \/E(COSKZ\/A_S”_D R(B)
in which 7, is an integration constant. The scale factor ex- JBcoshi2yAgr)—1" 2
pressed in terms of the conformal radial coordingtée-
comes then (3.3)
o 1 . with
a(n)= : . .
VAgsinh(9—7,) R(s) B+1
The differential equationi2.4) can therefore be written as 2\/E
V"' =3 coth{ n— 5, )v' =€(£+3)v. (2.77 ~ and where agaim, is an integration constant arfdis the

elliptic integral of the first clas§7], the scale factor can be
We note that even for the zero modée=0 there is an insta- Written as

bility, as the solution to this equation reads 1a
a(n)=ynd g4 n|m), (3.2

_ il _ _ —
v=vot vl 5cost(n—mn,)—costn—n.)]. (28 in which we have absorbed the constant into 7,

in which vy and v are integration constants. It follows that -1
for p—oo (i.e., asr—0) v blows up. In the corresponding y= ,
Lorentzian case this mode would oscillate along the timelike 2Ms

extra dimension. The conclusion thus obtained is that the h . llintic functi ith
five-dimensional bulk is unstable for solutié2.1) or (2.6.  Where nck[m) is an elliptic function with parameten [7].

N — pli4 : i
The stability of the generalized-dimensional Garriga- 11€N, denotingk= "7, we have for the Euclidean differ-
Sasaki scenario can also be analyzed following a similafntial equation for the coefficient
treatment. Since the Garriga-Sasaki metric for an arbitrary

(3.3

number of dimensionsl is found to be tractabl¢7] and V”+331/4M,,:€(€+3),,, (3.4)
expressible as cn(x|m)
ds?=a(n)?(+dn’+ dQéil), with sn, dn, and cn being elliptic functions as wéll. Now,

for the zero mode& =0 we obtain the analytical solution
with a(#) given again by Eq(2.6) for a d-dimensional cos-

mological constani 4, the differential equation for tensorial V)
perturbationsv [6] for the Euclidean case becomes v=vo+ W sn(x|m)dn(x|m)
V' —(d=2)cotankip— 7, )v'=€(£+d—2)v.
- ﬂarcsir( Jmsn(x|m)) (3.5
For ¢=0, we now obtain Jm ' '

084009-2



TENSORIAL PERTURBATIONS IN THE BULK OF . .. PHSICAL REVIEW D 68, 084009 (2003

with m;=1—m. It follows that thoughv oscillates along the It is rather interesting to realize that the stability to tenso-
entire directiony, it does not diverge anywhere on that di- rial perturbations of formally the same solutions for the scale
rection, so that, contrary to what happens for solut@ri), factor will critically depend on the number of dimensions of
the five-dimensional bulk for solutio2.2) appears to be the spacetime we deal with. In fact, there exist four-
stable to these zero-mode tensorial perturbations. It is wortdimensional asymptotically anti—de Sitter Euclidean worm-
noting, moreover, that in the Lorentzian case where the sdioles[9,10] which are characterized by a Robertson-Walker

lution is given in terms of the elliptic function enl/nc, metric and a scale factor which is exactly the same as that
given by Eq.(2.2) for a cosmological constart,=A. Such
a(n)=ycn(BY4y|m,), wormholes are usually obtained as the Euclidean solution

that corresponds to the case of a massless scalar field which
the solution for the zero mode for coefficients the same as is conformally coupled to the Hilbert-Einstein gravity plus a
in Eq.(3.5), but with parametem replaced for parameten; cosmological constamt [9,10]. However, even for the case
and vice versa. In this way, though tlie=0 gravitational- €=0, the solution appears to be unstable to the same kind of
wave mode is not damped, neither does it increase withensorial perturbations to which solutiof2.2) is in fact

Lorentzian timex. stable. In this case, the differential equation is modified to be
For € #0 the differential equation for can be rewritten
sn(x|m)dn(x|m

o o 4 2 pua SN |Cn()x|rr:(1) ™o, (@10

[no(x|m)v']" =€(£+3)nc(x|m)v (3.6)

The solution to Eq(3.10 is
in the Euclidean description and as
0_!
[en(x|my)v’]’ = €(€+3)cri(x|my) v (3.7) o=0o+ BT‘f{E[A(ﬁ”“n),mJ—mlﬁlf“n}, (3.1
m

in the Lorentzian description, witk= 847 in both cases. _ o _
We have been unable to find an analytical solution in closedvhereE is the elliptic integral of the second kiri8], andA
form for these differential equations, so that we will consideriS the amplitude of the corresponding elliptic functif8y.

the limiting behaviors ofv as 8Y47—0,2, ... andg4;  We can readily check that in fact this solution diverges as
—K,3K, ..., whereK is the complete elliptic integrdB]. n— . The counterpart for the Lorentzian baby universe will
In the former case for the Euclidean solution one can apnevertheless be stable to gravitational-wave perturbations
proximatev to be given by and corresponds to the solution
v=voexd V(€ +3)7], (3.9 70
oL 7 o=o0gt ’Ble{E[A(Bmm) my]—mgn},
and in the latter Euclidean casetends to generally finite ! (3.12

constant values. Thus, at least fgrintervals running up to
finite numbers of complete elliptic integrals, we see thatwith 7, a compact time coordinate.
there is no instability arising from thege~0 modes. For the
Lorentzian description negg8**»—0,2K, . . ., if we choose
for the constantA? the particular valueA?=175/(324\5),
we obtain a solution in terms of the ultraspherical Gegen- The conclusions of this paper are that, whereas the
bauer polynomial$8], Garriga-Sasaki instanton based on a trivial extension to five
or arbitrarily higher dimensions than the usual four-
v C¥%( ), (3.9 dimensional anti—de Sitter instanton and the kind of four-
dimensional Euclidean asymptotically anti—de Sitter worm-
which tends either to vanish for oddor to a finite nonzero hole we have just discussed are unstable to the tensorial
constant gravitational-wave-like perturbations, the baby universe as-
sociated with that wormhole and the nonsingular five-

IV. CONCLUSIONS

3 ¢ dimensional instanton which was used[R] to replace the
r 5 +§ Garriga-Sasaki solutiofiL] are both stable to the Lorentzian
v=(-1)"2— counterpart of such perturbations. A caveat to these conclu-
F(% E) sions should be mentioned. It is that, since the tensorial in-
2/\2 stability of the five-dimensional anti—de Sitter instanton

takes place as—0, this instability would coincide with the
for event, as» goes into these limiting values. F@**»  other kind of instability identified for that solution which
—K,3K, ..., theLorentzian solution would again tend to a arises from the invariant Weyl tensd@? also atr=0.
generally finite constant. Therefore, gravitational-wave perWhether or not these two apparently distinct kinds of insta-
turbations do not induce any instability in the five- bilities share a common ultimate origin is to be investigated.
dimensional bulk for our nonsingular solution. We note, moreover, that the presence of such instabilities
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