247 research outputs found

    Lateral thermokarst patterns in permafrost peat plateaus in northern Norway

    Get PDF
    Subarctic peatlands underlain by permafrost contain significant amounts of organic carbon. Our ability to quantify the evolution of such permafrost landscapes in numerical models is critical for providing robust predictions of the environmental and climatic changes to come. Yet, the accuracy of large-scale predictions has so far been hampered by small-scale physical processes that create a high spatial variability of thermal surface conditions, affecting the ground thermal regime and thus permafrost degradation patterns. In this regard, a better understanding of the small-scale interplay between microtopography and lateral fluxes of heat, water and snow can be achieved by field monitoring and process-based numerical modeling. Here, we quantify the topographic changes of the Šuoššjávri peat plateau (northern Norway) over a three-year period using drone-based repeat high-resolution photogrammetry. Our results show thermokarst degradation is concentrated on the edges of the plateau, representing 77 % of observed subsidence, while most of the inner plateau surface exhibits no detectable subsidence. Based on detailed investigation of eight zones of the plateau edge, we show that this edge degradation corresponds to an annual volume change of 0.13±0.07 m3 yr−1 per meter of retreating edge (orthogonal to the retreat direction). Using the CryoGrid3 land surface model, we show that these degradation patterns can be reproduced in a modeling framework that implements lateral redistribution of snow, subsurface water and heat, as well as ground subsidence due to melting of excess ice. By performing a sensitivity test for snow depths on the plateau under steady-state climate forcing, we obtain a threshold behavior for the start of edge degradation. Small snow depth variations (from 0 to 30 cm) result in highly different degradation behavior, from stability to fast degradation. For plateau snow depths in the range of field measurements, the simulated annual volume changes are broadly in agreement with the results of the drone survey. As snow depths are clearly correlated with ground surface temperatures, our results indicate that the approach can potentially be used to simulate climate-driven dynamics of edge degradation observed at our study site and other peat plateaus worldwide. Thus, the model approach represents a first step towards simulating climate-driven landscape development through thermokarst in permafrost peatlands

    Wolcott-Rallison syndrome

    Get PDF
    Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disease, characterized by neonatal/early-onset non-autoimmune insulin-requiring diabetes associated with skeletal dysplasia and growth retardation. Fewer than 60 cases have been described in the literature, although WRS is now recognised as the most frequent cause of neonatal/early-onset diabetes in patients with consanguineous parents. Typically, diabetes occurs before six months of age, and skeletal dysplasia is diagnosed within the first year or two of life. Other manifestations vary between patients in their nature and severity and include frequent episodes of acute liver failure, renal dysfunction, exocrine pancreas insufficiency, intellectual deficit, hypothyroidism, neutropenia and recurrent infections. Bone fractures may be frequent. WRS is caused by mutations in the gene encoding eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3), also known as PKR-like endoplasmic reticulum kinase (PERK). PERK is an endoplasmic reticulum (ER) transmembrane protein, which plays a key role in translation control during the unfolded protein response. ER dysfunction is central to the disease processes. The disease variability appears to be independent of the nature of the EIF2AK3 mutations, with the possible exception of an older age at onset; other factors may include other genes, exposure to environmental factors and disease management. WRS should be suspected in any infant who presents with permanent neonatal diabetes associated with skeletal dysplasia and/or episodes of acute liver failure. Molecular genetic testing confirms the diagnosis. Early diagnosis is recommended, in order to ensure rapid intervention for episodes of hepatic failure, which is the most life threatening complication. WRS should be differentiated from other forms of neonatal/early-onset insulin-dependent diabetes based on clinical presentation and genetic testing. Genetic counselling and antenatal diagnosis is recommended for parents of a WRS patient with confirmed EIF2AK3 mutation. Close therapeutic monitoring of diabetes and treatment with an insulin pump are recommended because of the risk of acute episodes of hypoglycaemia and ketoacidosis. Interventions under general anaesthesia increase the risk of acute aggravation, because of the toxicity of anaesthetics, and should be avoided. Prognosis is poor and most patients die at a young age. Intervention strategies targeting ER dysfunction provide hope for future therapy and prevention

    Inverse correlation between PDGFC expression and lymphocyte infiltration in human papillary thyroid carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the PDGF family have been suggested as potential biomarkers for papillary thyroid carcinomas (PTC). However, it is known that both expression and stimulatory effect of PDGF ligands can be affected by inflammatory cytokines. We have performed a microarray study in a collection of PTCs, of which about half the biopsies contained tumour-infiltrating lymphocytes or thyroiditis. To investigate the expression level of PDGF ligands and receptors in PTC we measured the relative mRNA expression of all members of the PDGF family by qRT-PCR in 10 classical PTC, eight clinically aggressive PTC, and five non-neoplastic thyroid specimens, and integrated qRT-PCR data with microarray data to enable us to link PDGF-associated gene expression profiles into networks based on recognized interactions. Finally, we investigated potential influence on PDGF mRNA levels by the presence of tumour-infiltrating lymphocytes.</p> <p>Methods</p> <p>qRT-PCR was performed on <it>PDGFA</it>, <it>PDGFB</it>, <it>PDGFC</it>, <it>PDGFD</it>, <it>PDGFRA PDGFRB </it>and a selection of lymphocyte specific mRNA transcripts. Semiquantitative assessment of tumour-infiltrating lymphocytes was performed on the adjacent part of the biopsy used for RNA extraction for all biopsies, while direct quantitation by qRT-PCR of lymphocyte-specific mRNA transcripts were performed on RNA also subjected to expression analysis. Relative expression values of PDGF family members were combined with a cDNA microarray dataset and analyzed based on clinical findings and PDGF expression patterns. Ingenuity Pathway Analysis (IPA) was used to elucidate potential molecular interactions and networks.</p> <p>Results</p> <p>PDGF family members were differentially regulated at the mRNA level in PTC as compared to normal thyroid specimens. Expression of <it>PDGFA </it>(p = 0.003), <it>PDGFB </it>(p = 0.01) and <it>PDGFC </it>(p = 0.006) were significantly up-regulated in PTCs compared to non-neoplastic thyroid tissue. In addition, expression of <it>PDGFC </it>was significantly up-regulated in classical PTCs as compared to clinically aggressive PTCs (p = 0.006), and <it>PDGFRB </it>were significantly up-regulated in clinically aggressive PTCs (p = 0.01) as compared to non-neoplastic tissue. Semiquantitative assessment of lymphocytes correlated well with quantitation of lymphocyte-specific gene expression. Further more, by combining TaqMan and microarray data we found a strong inverse correlation between <it>PDGFC </it>expression and the expression of lymphocyte specific mRNAs.</p> <p>Conclusion</p> <p>At the mRNA level, several members of the PDGF family are differentially expressed in PTCs as compared to normal thyroid tissue. Of these, only the <it>PDGFC </it>mRNA expression level initially seemed to distinguish classical PTCs from the more aggressive PTCs. However, further investigation showed that <it>PDGFC </it>expression level correlated inversely to the expression of several lymphocyte specific genes, and to the presence of lymphocytes in the biopsies. Thus, we find that <it>PDGFC </it>mRNA expression were down-regulated in biopsies containing infiltrated lymphocytes or thyroiditis. No other PDGF family member could be linked to lymphocyte specific gene expression in our collection of PTCs biopsies.</p
    • …
    corecore