38 research outputs found

    Upper Tropospheric Water Vapour Variability at High Latitudes- Part 1: Influence of the Annular Modes

    Get PDF
    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90°S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45% of the variability is explained by the AO at 6.5 ± -0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5-km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to \u3e 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km

    Validation of ACE-FTS Version 3.5 NOy Species Profiles Using Correlative Satellite Measurements

    Get PDF
    The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2 + NO3 + 2 x N2O5 + HNO3 + HNO4 + ClONO2 + BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For NO in the altitude range of 25-50 km, ACE-FTS typically agrees with correlative data to within -10%. Instrument-averaged mean relative differences are approximately -10% at 30-40 km for NO2, within ± 7% at 8-30km for HNO3, better than -7 % at 21-34 km for local morning N205, and better than -8% at 21-34 km for ClONO2. Where possible, the variations in the mean differences due to changes in the comparison local time and latitude are also discussed

    NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

    Get PDF
    NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE-00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N2 and O densities are lower in NRLMSIS 2.0; otherwise, the NRLMSISE-00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long-term changes

    Upper tropospheric water vapour variability at high latitudes – Part 1: Influence of the annular modes

    Get PDF
    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60–90° N and 60–90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = −0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004–2013). Using a seasonal time step and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950–2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km

    NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

    Get PDF
    NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE-00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N2 and O densities are lower in NRLMSIS 2.0; otherwise, the NRLMSISE-00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long-term changes

    Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Get PDF
    In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling

    An Explanation for the Nitrous Oxide Layer Observed in the Mesopause Region

    Get PDF
    Recent satellite measurements of a layer of enhanced nitrous oxide (N₂O) in the mesosphere-lower thermosphere (MLT) from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer have suggested an unexpected, minor high-altitude production source. Here we report the development of a mechanism and the first model simulations, which can explain the formation of this MLT N₂O layer. N₂O production occurs primarily via a reaction route involving the excitation of N₂ from secondary electrons. Simulations using the Whole Atmosphere Community Climate Model, with external forcing from the Global Airglow model, quantitatively reproduce the observed vertical, latitudinal, and seasonal N₂O variations. Sensitivity results indicate that photoelectrons are far more important than previously predicted, causing approximately two thirds of global N₂O production in the MLT. Energetic electron precipitation over high latitudes provides the remaining contribution. Solar cycle analysis reveals N₂O enhancements of up to ×2 at solar maximum compared to solar minimum
    corecore