48,377 research outputs found

    3D simulations of pillars formation around HII regions: the importance of shock curvature

    Full text link
    Radiative feedback from massive stars is a key process to understand how HII regions may enhance or inhibit star formation in pillars and globules at the interface with molecular clouds. We aim to contribute to model the interactions between ionization and gas clouds to better understand the processes at work. We study in detail the impact of modulations on the cloud-HII region interface and density modulations inside the cloud. We run three-dimensional hydrodynamical simulations based on Euler equations coupled with gravity using the HERACLES code. We implement a method to solve ionization/recombination equations and we take into account typical heating and cooling processes at work in the interstellar medium and due to ionization/recombination physics. UV radiation creates a dense shell compressed between an ionization front and a shock ahead. Interface modulations produce a curved shock that collapses on itself leading to stable growing pillar-like structures. The narrower the initial interface modulation, the longer the resulting pillar. We interpret pillars resulting from density modulations in terms of the ability of these density modula- tions to curve the shock ahead the ionization front. The shock curvature is a key process to understand the formation of structures at the edge of HII regions. Interface and density modulations at the edge of the cloud have a direct impact on the morphology of the dense shell during its formation. Deeper in the cloud, structures have less influence due to the high densities reached by the shell during its expansion.Comment: Accepted by A&A 03/11/201

    A single-board preprocessor and pulse generator

    Get PDF
    The Aeronomy Lab. of NOAA has designed and built a single board, programmable radar controller for use with VHF ST (stratosphere troposphere) radars. The controller consists of a coherent integrator preprocessor and a radar pulse generator, both of which are described, as well as interfaces to an antenna beam switch and a receiver bandwidth switch. The controller occupies a single slot in a Data General Nova of Eclipse computer. The integrator and pulse generator take advantage of high density, dual port FIFO chips such as the 512 x 9 Mostek MK 4501. These FIFOs have separate input and output ports and independent read and write cycles with cycle times of less than 200 ns, making them very fast and easy to interface. A simple block diagram of the coherent integrator is shown. The integrator is designed to handle inputs from one receiver (2 channels) with 1 sec sample spacing. The pulse generator is based on controllers designed by R. F. Woodman for the Arecibo and SOUSY radars us a recirculating memory scheme

    Weak lensing evidence for a filament between A222/A223

    Full text link
    We present a weak lensing analysis and comparison to optical and X-ray maps of the close pair of massive clusters A222/223. Indications for a filamentary connection between the clusters are found and discussed.Comment: 6 pages, 1 figure. To appear in Proc. IAU Colloquium 195: Outskirts of Galaxy Clusters - Intense Life in the Suburbs. Version with higher resolution available at http://www.astro.uni-bonn.de/~dietrich/torino_proc.ps.g

    Intrinsic galaxy shapes and alignments II: Modelling the intrinsic alignment contamination of weak lensing surveys

    Get PDF
    Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy shapes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.Comment: 23 pages, 14 figures; minor changes to match version published in MNRA

    Specific protein-protein binding in many-component mixtures of proteins

    Get PDF
    Proteins must bind to specific other proteins in vivo in order to function. The proteins must bind only to one or a few other proteins of the of order a thousand proteins typically present in vivo. Using a simple model of a protein, specific binding in many component mixtures is studied. It is found to be a demanding function in the sense that it demands that the binding sites of the proteins be encoded by long sequences of bits, and the requirement for specific binding then strongly constrains these sequences. This is quantified by the capacity of proteins of a given size (sequence length), which is the maximum number of specific-binding interactions possible in a mixture. This calculation of the maximum number possible is in the same spirit as the work of Shannon and others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in line with notation in information theory literature

    Effects of dark matter annihilation on the first stars

    Full text link
    We study the evolution of the first stars in the universe (Population III) from the early pre-Main Sequence until the end of helium burning in the presence of WIMP dark matter annihilation inside the stellar structure. The two different mechanisms that can provide this energy source are the contemporary contraction of baryons and dark matter, and the capture of WIMPs by scattering off the gas with subsequent accumulation inside the star. We find that the first mechanism can generate an equilibrium phase, previously known as a "dark star", which is transient and present in the very early stages of pre-MS evolution. The mechanism of scattering and capture acts later, and can support the star virtually forever, depending on environmental characteristic of the dark matter halo and on the specific WIMP model.Comment: Proceedings of the IAU Symposium 255, "Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies"; L.K. Hunt, S. Madden and R. Schneider ed
    corecore