1,013 research outputs found

    ENDOR Spectroscopy and DFT Calculations: Evidence for the Hydrogen-Bond Network Within α2 in the PCET of E. coli Ribonucleotide Reductase

    Get PDF
    Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and ÎČ2. ÎČ2 contains a stable di-iron tyrosyl radical (Y[subscript 122]‱) cofactor required to generate a thiyl radical (C[subscript 439]‱) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y[subscript 122] ⇆ W[subscript 48][?] ⇆ Y[subscript 356] in ÎČ2, across the subunit interface to Y[subscript 731] ⇆ Y[subscript 730] ⇆ C[subscript 439] in α2. Within α2 a colinear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH2Y) replaced Y[subscript 730] in α2, and this mutant was incubated with ÎČ2, cytidine 5â€Č-diphosphate, and adenosine 5â€Č-triphosphate to generate a NH2Y730‱ in D2O. [[superscript 2]H]-Electron–nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained, and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C[subscript 439] and Y[subscript 731]. A third proton was assigned to a water molecule in close proximity (2.2 Å O–H···O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH[subscript 2]Y[subscript 730]‱ are consistent with the combined effect of the hydrogen bonds to Cys[subscript 439] and Tyr[subscript 731], both nearly perpendicular to the ring plane of NH[subscript 2]Y[subscript 730]. The results provide the first experimental evidence for the hydrogen-bond network between the pathway residues in α2 of the active RNR complex, for which no structural data are available.National Institutes of Health (U.S.) (NIH GM29595

    Ab initio evaluation of local effective interactions in αâ€ČNaV2O5\alpha^\prime NaV_2O_5

    Full text link
    We will present the numerical evaluation of the hopping and magnetic exchange integrals for a nearest-neighbor t−Jt-J model of the quarter-filled αâ€ČNaV2O5\alpha^\prime NaV_2O_5 compound. The effective integrals are obtained from valence-spectroscopy {\em ab initio} calculations of embedded crystal fragments (two VO5VO_5 pyramids in the different geometries corresponding to the desired parameters). We are using a large configurations interaction (CI) method, where the CI space is specifically optimized to obtain accurate energy differences. We show that the αâ€ČNaV2O5\alpha^\prime NaV_2O_5 system can be seen as a two-dimensional asymmetric triangular Heisenberg lattice where the effective sites represent delocalized V−O−VV-O-V rung entities supporting the magnetic electrons.Comment: 24 pages, 5 figure

    Intrinsic regulation of hemangioma involution by platelet-derived growth factor

    Get PDF
    Infantile hemangioma is a vascular tumor that exhibits a unique natural cycle of rapid growth followed by involution. Previously, we have shown that hemangiomas arise from CD133+ stem cells that differentiate into endothelial cells when implanted in immunodeficient mice. The same clonally expanded stem cells also produced adipocytes, thus recapitulating the involuting phase of hemangioma. In the present study, we have elucidated the intrinsic mechanisms of adipocyte differentiation using hemangioma-derived stem cells (hemSCs). We found that platelet-derived growth factor (PDGF) is elevated during the proliferating phase and may inhibit adipocyte differentiation. hemSCs expressed high levels of PDGF-B and showed sustained tyrosine phosphorylation of PDGF receptors under basal (unstimulated) conditions. Inhibition of PDGF receptor signaling caused enhanced adipogenesis in hemSCs. Furthermore, exposure of hemSCs to exogenous PDGF-BB reduced the fat content and the expression of adipocyte-specific transcription factors. We also show that these autogenous inhibitory effects are mediated by PDGF receptor-ÎČ signaling. In summary, this study identifies PDGF signaling as an intrinsic negative regulator of hemangioma involution and highlights the therapeutic potential of disrupting PDGF signaling for the treatment of hemangiomas

    Proton Transfer, Hydrogen Bonding, and Disorder: Nitrogen Near-Edge X-ray Absorption Fine Structure and X-ray Photoelectron Spectroscopy of Bipyridine-Acid Salts and Co-crystals

    Get PDF
    The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to BrĂžnsted donation and the protonation state of nitrogen in the solid state is investigated through a series of multicomponent bipyridine–acid systems alongside X-ray photoelectron spectroscopy (XPS) data. A large shift to high energy occurs for the 1s → 1π* resonance in the nitrogen K-edge NEXAFS with proton transfer from the acid to the bipyridine base molecule and allows assignment as a salt (C═NH+), with the peak ratio providing the stoichiometry of the types of nitrogen species present. A corresponding binding energy shift for C═NH+ is observed in the nitrogen XPS, clearly identifying protonation and formation of a salt. The similar magnitude shifts observed with both techniques relative to the unprotonated nitrogen of co-crystals (C═N) suggest that the chemical state (initial-state) effects dominate. Results from both techniques reveal the sensitivity to identify proton transfer, hydrogen bond disorder, and even the potential to distinguish variations in hydrogen bond length to nitrogen
    • 

    corecore