38,218 research outputs found

    Fast high--voltage amplifiers for driving electro-optic modulators

    Full text link
    We describe five high-voltage (60 to 550V peak to peak), high-speed (1-300ns rise time; 1.3-300MHz bandwidth) linear amplifiers for driving capacitive or resistive loads such as electro-optic modulators. The amplifiers use bipolar transistors in various topologies. Two use electron tubes to overcome the speed limitations of high-voltage semiconductors. All amplifiers have been built. Measured performance data is given for each.Comment: 9pages, 6figures, 6tables, to appear in Review of Scientific Instrument

    Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae

    Full text link
    We assess the importance of the magneto-rotational instability in core-collapse supernovae by an analysis of the growth rates of unstable modes in typical post-collapse systems and by numerical simulations of simplified models. The interplay of differential rotation and thermal stratification defines different instability regimes which we confirm in our simulations. We investigate the termination of the growth of the MRI by parasitic instabilities, establish scaling laws characterising the termination amplitude, and study the long-term evolution of the saturated turbulent state.Comment: 6 pages, 1 figure. To appear in Proceedings of 4th International Conference on Numerical Modeling of Space Plasma Flows (Chamonix 2009

    Thermal Infrared Observations of Asteroid (99942) Apophis with Herschel

    Get PDF
    The near-Earth asteroid (99942) Apophis is a potentially hazardous asteroid. We obtained far-infrared observations of this asteroid with the Herschel Space Observatory's PACS instrument at 70, 100, and 160 micron. These were taken at two epochs in January and March 2013 during a close Earth encounter. These first thermal measurements of Apophis were taken at similar phase angles before and after opposition. We performed a detailed thermophysical model analysis by using the spin and shape model recently derived from applying a 2-period Fourier series method to a large sample of well-calibrated photometric observations. We find that the tumbling asteroid Apophis has an elongated shape with a mean diameter of 37510+14^{+14}_{-10} m (of an equal volume sphere) and a geometric V-band albedo of 0.300.06+0.05^{+0.05}_{-0.06}. We find a thermal inertia in the range 250-800 Jm2^{-2}s0.5^{-0.5}K1^{-1} (best solution at 600 Jm2^{-2}s0.5^{-0.5}K1^{-1}), which can be explained by a mixture of low conductivity fine regolith with larger rocks and boulders of high thermal inertia on the surface. The thermal inertia, and other similarities with (25143) Itokawa indicate that Apophis might also have a rubble-pile structure. If we combine the new size value with the assumption of an Itokawa-like density and porosity we estimate a mass between 4.4 and 6.2 1010^{10} kg which is more than 2-3 times larger than previous estimates. We expect that the newly derived properties will influence impact scenario studies and influence the long-term orbit predictions of Apophis.Comment: Accepted for publication in Astronomy & Astrophysics, 21 pages, 8 figures, 2 table

    Test of constancy of speed of light with rotating cryogenic optical resonators

    Full text link
    A test of Lorentz invariance for electromagnetic waves was performed by comparing the resonance frequencies of two optical resonators as a function of orientation in space. In terms of the Robertson-Mansouri-Sexl theory, we obtain βδ1/2=(+0.5±3±0.7)E10\beta-\delta-1/2=(+0.5\pm 3\pm 0.7) E-10, a ten-fold improvement compared to the previous best results. We also set a first upper limit for a so far unknown parameter of the Standard Model Extension test theory, (κ~e)ZZ<2E14|(\tilde{\kappa}_{e-})^{ZZ}| < 2\cdot E-14.Comment: 4 pages, 2 figures, accepted for publication Phys. Rev. A (2005

    Spin Waves in Quantum Antiferromagnets

    Full text link
    Using a self-consistent mean-field theory for the S=1/2S=1/2 Heisenberg antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for the dispersion. It is exact in one dimension (d=1d=1) and agrees well with numerical results in d=2d=2. With an expansion in powers of the inverse coordination number 1/Z1/Z (Z=2dZ=2d) we investigate if this expression can be {\em exact} for all dd. The projection method of Mori-Zwanzig is used for the {\em dynamical} spin susceptibility. We find that the expression of Kr\"uger and Schuck deviates in order 1/Z21/Z^2 from our rigorous result. Our method is generalised to arbitrary spin SS and to models with easy-axis anisotropy \D. It can be systematically improved to higher orders in 1/Z1/Z. We clarify its relation to the 1/S1/S expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette

    Reactions at polymer interfaces: A Monte Carlo Simulation

    Full text link
    Reactions at a strongly segregated interface of a symmetric binary polymer blend are investigated via Monte Carlo simulations. End functionalized homopolymers of different species interact at the interface instantaneously and irreversibly to form diblock copolymers. The simulations, in the framework of the bond fluctuation model, determine the time dependence of the copolymer production in the initial and intermediate time regime for small reactant concentration ρ0Rg3=0.163...0.0406\rho_0 R_g^3=0.163 ... 0.0406. The results are compared to recent theories and simulation data of a simple reaction diffusion model. For the reactant concentration accessible in the simulation, no linear growth of the copolymer density is found in the initial regime, and a t\sqrt{t}-law is observed in the intermediate stage.Comment: to appear in Macromolecule

    Integrability in Yang-Mills theory on the light cone beyond leading order

    Full text link
    The one-loop dilatation operator in Yang-Mills theory possesses a hidden integrability symmetry in the sector of maximal helicity Wilson operators. We calculate two-loop corrections to the dilatation operator and demonstrate that while integrability is broken for matter in the fundamental representation of the SU(3) gauge group, for the adjoint SU(N_c) matter it survives the conformal symmetry breaking and persists in supersymmetric N=1, N=2 and N=4 Yang-Mills theories.Comment: 4 pages, 2 figure

    Signs of strong Na and K absorption in the transmission spectrum of WASP-103b

    Full text link
    Context: Transmission spectroscopy has become a prominent tool for characterizing the atmospheric properties on close-in transiting planets. Recent observations have revealed a remarkable diversity in exoplanet spectra, which show absorption signatures of Na, K and H2O\mathrm{H_2O}, in some cases partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and hazes) themselves have been detected in the transmission spectra of several planets thanks to wavelength-dependent slopes caused by the particles' scattering properties. Aims: We present an optical 550 - 960 nm transmission spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest (2500 K) and most massive (1.5 MJM_J) planets yet to be studied with this technique. WASP-103b orbits its star at a separation of less than 1.2 times the Roche limit and is predicted to be strongly tidally distorted. Methods: We have used Gemini/GMOS to obtain multi-object spectroscopy hroughout three transits of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2 nm to infer the planet's transmission spectrum. Results: We find that WASP-103b shows increased absorption in the cores of the alkali (Na, K) line features. We do not confirm the presence of any strong scattering slope as previously suggested, pointing towards a clear atmosphere for the highly irradiated, massive exoplanet WASP-103b. We constrain the upper boundary of any potential cloud deck to reside at pressure levels above 0.01 bar. This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra.Comment: Accepted for publication in A&
    corecore