124 research outputs found

    In situ neutron diffraction measurement of residual stress relaxation in a welded steel pipe during heat treatment

    Get PDF
    Many previous studies have presented results on the relaxation of residual stress in a welded component as a result of postweld heat treatment. Techniques such as neutron diffraction and deep hole drilling have been used to measure the residual stress after the heat treatment and compare this with the residual stress for the component in the as-welded condition. The work described in this paper is novel: neutron diffraction is used to measure the relaxation of residual stress continuously as the heat treatment is being carried out. Residual stresses are measured in a butt-welded ferritic steel pipe as the pipe is heat treated to 650 °C and then cooled to room temperature. The results identify those parts of the heat treatment that lead to significant stress relaxation and the mechanisms responsible for this relaxation. The techniques developed during this work allow future heat treatm

    A review of the changes of internal state related to high temperature creep of polycrystalline metals and alloys

    Get PDF
    When polycrystalline metals and their alloys are used at high temperature, creep deformation leads to changes in their internal state. The change in internal state manifests itself in many ways, but the two ways that concern us in this review are (i) the creation of internal stress arising from the strain incompatibility between grains and/or the formation of cell/sub-grain structures and (ii) a change in the material resistance. This review aims to provide a clear separation of these two concepts by exploring the origin of each term and how it is associated with the creep deformation mechanism. Experimental techniques used to measure the internal stress and internal resistance over different length-scales are critically reviewed. It is demonstrated that the interpretation of the measured values requires knowledge of the dominant creep deformation mechanism. Finally, the concluding comments provide a summary of the key messages delivered in this review and highlight the challenges that remain to be addressed

    Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steel

    Get PDF
    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI3) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the alpha'-martensite is degraded to alpha-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of CrxC during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 degrees) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 mu m). (c) 2006 American Vacuum Society
    corecore