17,299 research outputs found

    Barotropic thin shells with linear EOS as models of stars and circumstellar shells in general relativity

    Get PDF
    The spherically symmetric thin shells of the barotropic fluids with the linear equation of state are considered within the frameworks of general relativity. We study several aspects of the shells as completely relativistic models of stars, first of all the neutron stars and white dwarfs, and circumstellar shells. The exact equations of motion of the shells are obtained. Also we calculate the parameters of the equilibrium configurations, including the radii of static shells. Finally, we study the stability of the equilibrium shells against radial perturbations.Comment: final version; ps-version of figure is available by email request to [email protected]

    Time reparametrization invariance in arbitrary range p-spin models: symmetric versus non-symmetric dynamics

    Full text link
    We explore the existence of time reparametrization symmetry in p-spin models. Using the Martin-Siggia-Rose generating functional, we analytically probe the long-time dynamics. We perform a renormalization group analysis where we systematically integrate over short timescale fluctuations. We find three families of stable fixed points and study the symmetry of those fixed points with respect to time reparametrizations. One of those families is composed entirely of symmetric fixed points, which are associated with the low temperature dynamics. The other two families are composed entirely of non-symmetric fixed points. One of these two non-symmetric families corresponds to the high temperature dynamics. Time reparametrization symmetry is a continuous symmetry that is spontaneously broken in the glass state and we argue that this gives rise to the presence of Goldstone modes. We expect the Goldstone modes to determine the properties of fluctuations in the glass state, in particular predicting the presence of dynamical heterogeneity.Comment: v2: Extensively modified to discuss both high temperature (non-symmetric) and low temperature (symmetric) renormalization group fixed points. Now 16 pages with 1 figure. v1: 13 page

    Description and molecular phylogeny of a new and one known needle nematode of the genus Paralongidorus (Nematoda: Longidoridae) from grapevine in Portugal

    Get PDF
    A new and a known longidorid nematode, Paralongidorus lusitanicus n. sp. and Paralongidorus plesioepimikis, are described and illustrated from populations extracted from soil associated with grapevine (Vitis vinifera L.) from Escaroupim and PĂł (central-Western Portugal), respectively. The new needle nematode P. lusitanicus n. sp. is characterised by a very large body size (8072–12,022 ÎŒm), an expanded and rounded lip region, ca 30 ÎŒm wide, with a clear constriction followed by a depression posterior to the amphidial aperture, amphidial fovea very large (11.0–19.0 ÎŒm), stirrup-shaped, with conspicuous slit-like aperture as shown in scanning electron microscopy studies, a very long and flexible odontostyle (180.0–223.0 ÎŒm), guiding ring located at 28.0–41.5 ÎŒm from anterior end, vulva anterior to the mid-body (34–41%), a dorsally convex-conoid tail with rounded terminus (29–42 ÎŒm long), bearing two or three pairs of caudal pores and males common (ratio 1:1.6 females) with spicules ca 80 ÎŒm long. Morphological and morphometric traits for P. plesioepimikis fit well with the original description, and is reported for the first time in Portugal. Integrative diagnosis of both species was completed with molecular data obtained using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA and partial 18S–rDNA. The phylogenetic relationships of these species with other Paralongidorus spp. using these three molecular markers indicated that P. lusitanicus n. sp. clustered together with other Paralongidorus spp. forming a sister clade with P. plesioepimikis, both of them sharing a large body, long odontostyle, an anteriorly located vulva and an expanded and rounded lip region with a clear constriction followed by a depression posterior to the amphidial aperture

    Energy harvesting from vehicular traffic over speed bumps: A review

    Get PDF
    Energy used by vehicles to slow down in areas of limited speed is wasted. A traffic energy-harvesting device (TEHD) is capable of harvesting vehicle energy when passing over a speed bump. This paper presents a classification of the different technologies used in the existing TEHDs. Moreover, an estimation of the energy that could be harvested with the different technologies and their cost has been elaborated. The energy recovered with these devices could be used for marking and lighting of roads in urban areas, making transportation infrastructures more sustainable and environmentally friendly

    Random solids and random solidification: What can be learned by exploring systems obeying permanent random constraints?

    Full text link
    In many interesting physical settings, such as the vulcanization of rubber, the introduction of permanent random constraints between the constituents of a homogeneous fluid can cause a phase transition to a random solid state. In this random solid state, particles are permanently but randomly localized in space, and a rigidity to shear deformations emerges. Owing to the permanence of the random constraints, this phase transition is an equilibrium transition, which confers on it a simplicity (at least relative to the conventional glass transition) in the sense that it is amenable to established techniques of equilibrium statistical mechanics. In this Paper I shall review recent developments in the theory of random solidification for systems obeying permanent random constraints, with the aim of bringing to the fore the similarities and differences between such systems and those exhibiting the conventional glass transition. I shall also report new results, obtained in collaboration with Weiqun Peng, on equilibrium correlations and susceptibilities that signal the approach of the random solidification transition, discussing the physical interpretation and values of these quantities both at the Gaussian level of approximation and, via a renormalization-group approach, beyond.Comment: Paper presented at the "Unifying Concepts in Glass Physics" workshop, International Centre for Theoretical Physics, Trieste, Italy (September 15-18, 1999

    Composite infrared bolometers with Si_3N_4 micromesh absorbers

    Get PDF
    We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G
    • 

    corecore