17,299 research outputs found
Barotropic thin shells with linear EOS as models of stars and circumstellar shells in general relativity
The spherically symmetric thin shells of the barotropic fluids with the
linear equation of state are considered within the frameworks of general
relativity. We study several aspects of the shells as completely relativistic
models of stars, first of all the neutron stars and white dwarfs, and
circumstellar shells. The exact equations of motion of the shells are obtained.
Also we calculate the parameters of the equilibrium configurations, including
the radii of static shells. Finally, we study the stability of the equilibrium
shells against radial perturbations.Comment: final version; ps-version of figure is available by email request to
[email protected]
Time reparametrization invariance in arbitrary range p-spin models: symmetric versus non-symmetric dynamics
We explore the existence of time reparametrization symmetry in p-spin models.
Using the Martin-Siggia-Rose generating functional, we analytically probe the
long-time dynamics. We perform a renormalization group analysis where we
systematically integrate over short timescale fluctuations. We find three
families of stable fixed points and study the symmetry of those fixed points
with respect to time reparametrizations. One of those families is composed
entirely of symmetric fixed points, which are associated with the low
temperature dynamics. The other two families are composed entirely of
non-symmetric fixed points. One of these two non-symmetric families corresponds
to the high temperature dynamics.
Time reparametrization symmetry is a continuous symmetry that is
spontaneously broken in the glass state and we argue that this gives rise to
the presence of Goldstone modes. We expect the Goldstone modes to determine the
properties of fluctuations in the glass state, in particular predicting the
presence of dynamical heterogeneity.Comment: v2: Extensively modified to discuss both high temperature
(non-symmetric) and low temperature (symmetric) renormalization group fixed
points. Now 16 pages with 1 figure. v1: 13 page
Description and molecular phylogeny of a new and one known needle nematode of the genus Paralongidorus (Nematoda: Longidoridae) from grapevine in Portugal
A new and a known longidorid nematode, Paralongidorus lusitanicus n. sp. and Paralongidorus plesioepimikis, are described and illustrated from populations extracted from soil associated with grapevine (Vitis vinifera L.) from Escaroupim and PĂł (central-Western Portugal), respectively. The new needle nematode P. lusitanicus n. sp. is characterised by a very large body size (8072â12,022 ÎŒm), an expanded and rounded lip region, ca 30 ÎŒm wide, with a clear constriction followed by a depression posterior to the amphidial aperture, amphidial fovea very large (11.0â19.0 ÎŒm), stirrup-shaped, with conspicuous slit-like aperture as shown in scanning electron microscopy studies, a very long and flexible odontostyle (180.0â223.0 ÎŒm), guiding ring located at 28.0â41.5 ÎŒm from anterior end, vulva anterior to the mid-body (34â41%), a dorsally convex-conoid tail with rounded terminus (29â42 ÎŒm long), bearing two or three pairs of caudal pores and males common (ratio 1:1.6 females) with spicules ca 80 ÎŒm long. Morphological and morphometric traits for P. plesioepimikis fit well with the original description, and is reported for the first time in Portugal. Integrative diagnosis of both species was completed with molecular data obtained using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA and partial 18SârDNA. The phylogenetic relationships of these species with other Paralongidorus spp. using these three molecular markers indicated that P. lusitanicus n. sp. clustered together with other Paralongidorus spp. forming a sister clade with P. plesioepimikis, both of them sharing a large body, long odontostyle, an anteriorly located vulva and an expanded and rounded lip region with a clear constriction followed by a depression posterior to the amphidial aperture
Energy harvesting from vehicular traffic over speed bumps: A review
Energy used by vehicles to slow down in areas of limited speed is wasted. A traffic energy-harvesting device (TEHD) is capable of harvesting vehicle energy when passing over a speed bump. This paper presents a classification of the different technologies used in the existing TEHDs. Moreover, an estimation of the energy that could be harvested with the different technologies and their cost has been elaborated. The energy recovered with these devices could be used for marking and lighting of roads in urban areas, making transportation infrastructures more sustainable and environmentally friendly
Random solids and random solidification: What can be learned by exploring systems obeying permanent random constraints?
In many interesting physical settings, such as the vulcanization of rubber,
the introduction of permanent random constraints between the constituents of a
homogeneous fluid can cause a phase transition to a random solid state. In this
random solid state, particles are permanently but randomly localized in space,
and a rigidity to shear deformations emerges. Owing to the permanence of the
random constraints, this phase transition is an equilibrium transition, which
confers on it a simplicity (at least relative to the conventional glass
transition) in the sense that it is amenable to established techniques of
equilibrium statistical mechanics. In this Paper I shall review recent
developments in the theory of random solidification for systems obeying
permanent random constraints, with the aim of bringing to the fore the
similarities and differences between such systems and those exhibiting the
conventional glass transition. I shall also report new results, obtained in
collaboration with Weiqun Peng, on equilibrium correlations and
susceptibilities that signal the approach of the random solidification
transition, discussing the physical interpretation and values of these
quantities both at the Gaussian level of approximation and, via a
renormalization-group approach, beyond.Comment: Paper presented at the "Unifying Concepts in Glass Physics" workshop,
International Centre for Theoretical Physics, Trieste, Italy (September
15-18, 1999
Composite infrared bolometers with Si_3N_4 micromesh absorbers
We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20Ă reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 Ă 10^(â11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the SunyaevâZelâdovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G
- âŠ