100 research outputs found

    The accuracy rate of Alvarado score, ultrasonography, and computerized tomography scan in the diagnosis of acute appendicitis in our center

    Get PDF
    Objective: In this study, we aim to compare the relationship between the Alvarado score, ultrasonography, and multislice computerized tomography (CT) findings used for the diagnosis of the patients who presented to our emergency unit with clinical features suggestive of acute appendicitis.Materials and Methods: Seventy.four patients operated with the diagnosis of acute appendicitis were included in the study. The demographic  characteristics of the patients, physical findings, blood parameters,  Alvarado scores, the radiological method used for the diagnosis, the  surgical methods (open or laparoscopic) and the pathology results wererecorded on the standard proforma. The collected data were analyzed with Statistical Package for Social Sciences (SPSS 15 for Windows, SPSS Inc., Chicago, Illinois, USA) computer program.Results: During study period, the sensitivity of ultrasonography was found to be as 71.2%, specificity as 46.7%, the positive predictive value (PPV) as 82.2%, the negative predictive value (NPV) as 31.8%, and the accuracy  rate was determined as 65.7%. The sensitivity of tomography was  determined as 97.2%, the specificity as 62.5%, PPV as 92.1%, and NPV as 83.3%, and the accuracy rate was determined as 90%. The sensitivity of  the Alvarado score was calculated as 54%, the specificity as 73.3%, the PPV as 88.2% and the NPV as 29.7%, and the accuracy rate was determined as 57.7%.Conclusion: In conclusion, computerized tomography (CT) was found to have higher specificity and sensitivity than Alvarado score and USG which are not sufficient on their own for taking the decision for surgery. We also found that CT scan had lower negative laparotomy rate when compared with the other two modalities.Key words: Alvarado score, appendicitis, computerized tomography, ultrasonograph

    Comparison of hyperpronation and supination‑flexion techniques in children presented to emergency department with painful pronation

    Get PDF
    Context: Radial head subluxation, also known as ‘pulled elbow’, ‘dislocated elbow’ or ‘nursemaid’s elbow’, is one of the most common upper extremity injuries in young children and a common reason to visit Emergency Department (ED).Aim: To compare supination of the wrist followed by flexion of the elbow (the traditional reduction technique) to hyperpronation of the wrist in the reduction of radial head subluxations (nursemaid’s elbow) maneuvers in children presented to ED with painful pronation and to determine which method is less painful by children.Settings and Design: This prospective randomize study involved a consecutive sampling of children between 1‑5 year old who were presented to the ED with painful pronation.Materials and Methods: The initial procedure was repeated if baseline functioning did not return 20 minutes after the initial reduction attempt. Failure of that technique 30 minutes after the initial reduction attempt resulted in a cross‑over to the alternate method of reduction.Statistical analysis used: Datas were analyzed using SPSS for Windows 16.0. Mean, standard deviation, independent samples t test, Chi‑square test, and paired t test were used in the assessment of pain scores before and after reduction.Results: When pain scores before and after reduction were compared between groups to determine which technique is less painful by children, no significant difference was found between groups.Conclusions: It was found that in the reduction of radial head subluxations, the hyperpronation technique is more effective in children who were presented to ED with painful pronation compared with supination‑flexion. However, there was no significant difference between these techniques in terms of pain.Key words: Child, emergency department, nursemaid’s elbow, pain, pulled elbo

    Intra-anal imiquimod cream against human papillomavirus infection in men who have sex with men living with hiv: A single-arm, open-label pilot study

    Get PDF
    Men who have sex with men (MSM) living with HIV have a high prevalence and incidence of anal high-risk human papillomavirus (hrHPV) and anal cancer. We conducted an open-label, single-arm pilot study to examine the tolerability of imiquimod cream among MSM aged ≥18 years, living with HIV, who tested positive for anal hrHPV at Melbourne Sexual Health Centre between April 2018 and June 2020. We instructed men to apply 6.25 mg imiquimod intra-anally and peri-anally 3 doses per week for 16 weeks (period 1) and then one dose per week for a further 48 weeks (period 2). Twenty-seven MSM enrolled in period 1 and 24 (86%) applied at least 50% of doses. All men reported adverse events (AEs), including 39.5% grade 1, 39.5% grade 2, and 21% grade 3 AEs on at least one occasion. Eighteen MSM (67%) temporarily stopped using imiquimod during period 1, most commonly due to local AEs (n = 11) such as irritation and itching. Eighteen MSM continued in period 2 and all applied at least 50% of doses with no treatment-limiting AEs reported. Imiquimod 3 doses per week caused local AEs in most men and was not well tolerated. In contrast, once-a-week application was well tolerated over 48-weeks with no treatment-limiting AEs

    In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice

    Get PDF
    imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging., which were correlated with histology after animal euthanasia. NIRF images and lesion volume.Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke

    Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    Get PDF
    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells

    Translational Stroke Research Using a Rabbit Embolic Stroke Model: A Correlative Analysis Hypothesis for Novel Therapy Development

    Get PDF
    Alteplase (tissue plasminogen activator, tPA) is currently the only FDA-approved treatment that can be given to acute ischemic stroke (AIS) patients if patients present within 3 h of an ischemic stroke. After 14 years of alteplase clinical research, evidence now suggests that the therapeutic treatment window can be expanded 4.5 h, but this is not formally approved by the FDA. Even though there remains a significant risk of intracerebral hemorrhage associated with alteplase administration, there is an increased chance of favorable outcome with tPA treatment. Over the last 30 years, the use of preclinical models has assisted with the search for new effective treatments for stroke, but there has been difficulty with the translation of efficacy from animals to humans. Current research focuses on the development of new and potentially useful thrombolytics, neuroprotective agents, and devices which are also being tested for efficacy in preclinical and clinical trials. One model in particular, the rabbit small clot embolic stroke model (RSCEM) which was developed to test tPA for efficacy, remains the only preclinical model used to gain FDA approval of a therapeutic for stroke. Correlative analyses from existing preclinical translational studies and clinical trials indicate that there is a therapeutic window ratio (ARR) of 2.43-3 between the RSCEM and AIS patients. In conclusion, the RSCEM can be used as an effective translational tool to gauge the clinical potential of new treatments

    Animal models of focal brain ischemia

    Get PDF
    Stroke is a leading cause of disability and death in many countries. Understanding the pathophysiology of ischemic injury and developing therapies is an important endeavor that requires much additional research. Animal stroke models provide an important mechanism for these activities. A large number of stroke models have been developed and are currently used in laboratories around the world. These models are overviewed as are approaches for measuring infarct size and functional outcome

    Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice

    Get PDF
    Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage
    corecore