748 research outputs found

    Further Results on Arithmetic Filters for Geometric Predicates

    Get PDF
    An efficient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of filters. The predicate is first evaluated using rounding computations, and an error estimation gives a certificate of the validity of the result. In this note, we studies the statistical efficiency of filters for cosphericity predicate with an assumption of regular distribution of the points. We prove that the expected value of the polynomial corresponding to the in sphere test is greater than epsilon with probability O(epsilon log 1/epsilon) improving the results of a previous paper by the same authors.Comment: 7 pages 2 figures presented at the 15th European Workshop Comput. Geom., 113--116, 1999 improve previous results (in other paper

    A Probabilistic Analysis of the Power of Arithmetic Filters

    Get PDF
    The assumption of real-number arithmetic, which is at the basis of conventional geometric algorithms, has been seriously challenged in recent years, since digital computers do not exhibit such capability. A geometric predicate usually consists of evaluating the sign of some algebraic expression. In most cases, rounded computations yield a reliable result, but sometimes rounded arithmetic introduces errors which may invalidate the algorithms. The rounded arithmetic may produce an incorrect result only if the exact absolute value of the algebraic expression is smaller than some (small) varepsilon, which represents the largest error that may arise in the evaluation of the expression. The threshold varepsilon depends on the structure of the expression and on the adopted computer arithmetic, assuming that the input operands are error-free. A pair (arithmetic engine,threshold) is an "arithmetic filter". In this paper we develop a general technique for assessing the efficacy of an arithmetic filter. The analysis consists of evaluating both the threshold and the probability of failure of the filter. To exemplify the approach, under the assumption that the input points be chosen randomly in a unit ball or unit cube with uniform density, we analyze the two important predicates "which-side" and "insphere". We show that the probability that the absolute values of the corresponding determinants be no larger than some positive value V, with emphasis on small V, is Theta(V) for the which-side predicate, while for the insphere predicate it is Theta(V^(2/3)) in dimension 1, O(sqrt(V)) in dimension 2, and O(sqrt(V) ln(1/V)) in higher dimensions. Constants are small, and are given in the paper.Comment: 22 pages 7 figures Results for in sphere test inproved in cs.CG/990702

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    COMPUTING THE UNION OF 3-COLORED TRIANGLES

    Full text link

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    Evaluating Signs of Determinants Using Single-Precision Arithmetic

    Get PDF
    We propose a method of evaluating signs of 2×2 and 3×3 determinants with b-bit integer entries using only b and (b + 1)-bit arithmetic, respectively. This algorithm has numerous applications in geometric computation and provides a general and practical approach to robustness. The algorithm has been implemented and compared with other exact computation methods

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    Load-Balancing for Parallel Delaunay Triangulations

    Get PDF
    Computing the Delaunay triangulation (DT) of a given point set in RD\mathbb{R}^D is one of the fundamental operations in computational geometry. Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm that merges two partial triangulations by re-triangulating a small subset of their vertices - the border vertices - and combining the three triangulations efficiently via parallel hash table lookups. The input point division should therefore yield roughly equal-sized partitions for good load-balancing and also result in a small number of border vertices for fast merging. In this paper, we present a novel divide-step based on partitioning the triangulation of a small sample of the input points. In experiments on synthetic and real-world data sets, we achieve nearly perfectly balanced partitions and small border triangulations. This almost cuts running time in half compared to non-data-sensitive division schemes on inputs exhibiting an exploitable underlying structure.Comment: Short version submitted to EuroPar 201
    corecore