46 research outputs found

    Participation in medical decision-making across Europe: an international longitudinal multicenter study

    Get PDF
    Background: The purpose of this paper was to examine national differences in the desire to participate in decision-making of people with severe mental illness in six European countries. Methods: The data was taken from a European longitudinal observational study (CEDAR; ISRCTN75841675). A sample of 514 patients with severe mental illness from the study centers in Ulm, Germany, London, England, Naples, Italy, Debrecen, Hungary, Aalborg, Denmark and Zurich, Switzerland were assessed as to desire to participate in medical decision-making. Associations between desire for participation in decision-making and center location were analyzed with generalized estimating equations. Results: We found large cross-national differences in patients’ desire to participate in decision-making, with the center explaining 40% of total variance in the desire for participation (p<0.001). Averaged over time and independent of patient characteristics, London (mean=2.27), Ulm (mean=2.13) and Zurich (mean=2.14) showed significantly higher scores in desire for participation, followed by Aalborg (mean=1.97), where scores were in turn significantly higher than in Debrecen (mean=1.56). The lowest scores were reported in Naples (mean=1.14). Over time, desire for participation in decision-making increased significantly in Zurich (b=0.23) and decreased in Naples (b=-0.14). In all other centers, values remained stable. Conclusions: This study demonstrates that patients’ desire for participation in decisionmaking varies by location. We suggest that more research attention be focused on identifying specific cultural and social factors in each country to further explain observed differences across Europe

    TIG3 Tumor Suppressor-Dependent Organelle Redistribution and Apoptosis in Skin Cancer Cells

    Get PDF
    TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis

    Disruption of Spectrin-Like Cytoskeleton in Differentiating Keratinocytes by PKCδ Activation Is Associated with Phosphorylated Adducin

    Get PDF
    Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex

    The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q

    Full text link
    One of the vital roles of ascorbic acid (vitamin C) is to act as an antioxidant to protect cellular components from free radical damage. Ascorbic acid has been shown to scavenge free radicals directly in the aqueous phases of cells and the circulatory system. Ascorbic acid has also been proven to protect membrane and other hydrophobic compartments from such damage by regenerating the antioxidant form of vitamin E. In addition, reduced coenzyme Q, also a resident of hydrophobic compartments, interacts with vitamin E to regenerate its antioxidant form. The mechanism of vitamin C antioxidant function, the myriad of pathologies resulting from its clinical deficiency, and the many health benefits it provides, are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44796/1/10863_2004_Article_BF00762775.pd

    Häufigkeit und Bedeutung der Relaparotomie

    No full text

    Surface Proteomics Reveals CD72 as a Target for In Vitro–Evolved Nanobody-Based CAR-T Cells in KMT2A/MLL1-Rearranged B-ALL

    No full text
    Alternative strategies are needed for patients with B-cell malignancy relapsing after CD19-targeted immunotherapy. Here, cell surface proteomics revealed CD72 as an optimal target for poor-prognosis KMT2A/MLL1-rearranged (MLLr) B-cell acute lymphoblastic leukemia (B-ALL), which we further found to be expressed in other B-cell malignancies. Using a recently described, fully in vitro system, we selected synthetic CD72-specific nanobodies, incorporated them into chimeric antigen receptors (CAR), and demonstrated robust activity against B-cell malignancy models, including CD19 loss. Taking advantage of the role of CD72 in inhibiting B-cell receptor signaling, we found that SHIP1 inhibition increased CD72 surface density. We establish that CD72-nanobody CAR-T cells are a promising therapy for MLLr B-ALL. SIGNIFICANCE: Patients with MLLr B-ALL have poor prognoses despite recent immunotherapy advances. Here, surface proteomics identifies CD72 as being enriched on MLLr B-ALL but also widely expressed across B-cell cancers. We show that a recently described, fully in vitro nanobody platform generates binders highly active in CAR-T cells and demonstrate its broad applicability for immunotherapy development.This article is highlighted in the In This Issue feature, p. 1861
    corecore