191 research outputs found

    Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach

    Get PDF
    Lyapunov-Krasowskii functionals are used to design quantized control laws for nonlinear continuous-time systems in the presence of constant delays in the input. The quantized control law is implemented via hysteresis to prevent chattering. Under appropriate conditions, our analysis applies to stabilizable nonlinear systems for any value of the quantization density. The resulting quantized feedback is parametrized with respect to the quantization density. Moreover, the maximal allowable delay tolerated by the system is characterized as a function of the quantization density.Comment: 31 pages, 3 figures, to appear in Mathematics of Control, Signals, and System

    Juvenile salmonid distribution, growth, condition, origin, and environmental and species associations in the Northern California Current

    Get PDF
    Information is summarized on juvenile salmonid distribution, size, condition, growth, stock origin, and species and environmental associations from June and August 2000 GLOBEC cruises with particular emphasis on differences related to the regions north and south of Cape Blanco off Southern Oregon. Juvenile salmon were more abundant during the August cruise as compared to the June cruise and were mainly distributed northward from Cape Blanco. There were distinct differences in distribution patterns between salmon species: chinook salmon were found close inshore in cooler water all along the coast and coho salmon were rarely found south of Cape Blanco. Distance offshore and temperature were the dominant explanatory variables related to coho and chinook salmon distribution. The nekton assemblages differed significantly between cruises. The June cruise was dominated by juvenile rockfishes, rex sole, and sablefish, which were almost completely absent in August. The forage fish community during June comprised Pacific herring and whitebait smelt north of Cape Blanco and surf smelt south of Cape Blanco. The fish community in August was dominated by Pacific sardines and highly migratory pelagic species. Estimated growth rates of juvenile coho salmon were higher in the GLOBEC study area than in areas farther north. An unusually high percentage of coho salmon in the study area were precocious males. Significant differences in growth and condition of juvenile coho salmon indicated different oceanographic environments north and south of Cape Blanco. The condition index was higher in juvenile coho salmon to the north but no significant differences were found for yearling chinook salmon. Genetic mixed stock analysis indicated that during June, most of the Chinook salmon in our sample originated from rivers along the central coast of Oregon. In August, chinook salmon sampled south of Cape Blanco were largely from southern Oregon and northern California; whereas most chinook salmon north of Cape Blanco were from the Central Valley in California

    An ISS Small-Gain Theorem for General Networks

    Full text link
    We provide a generalized version of the nonlinear small-gain theorem for the case of more than two coupled input-to-state stable (ISS) systems. For this result the interconnection gains are described in a nonlinear gain matrix and the small-gain condition requires bounds on the image of this gain matrix. The condition may be interpreted as a nonlinear generalization of the requirement that the spectral radius of the gain matrix is less than one. We give some interpretations of the condition in special cases covering two subsystems, linear gains, linear systems and an associated artificial dynamical system.Comment: 26 pages, 3 figures, submitted to Mathematics of Control, Signals, and Systems (MCSS

    Computation of Lyapunov functions for systems with multiple attractors

    Get PDF
    We present a novel method to compute Lyapunov functions for continuous-time systems with multiple local attractors. In the proposed method one first computes an outer approximation of the local attractors using a graphtheoretic approach. Then a candidate Lyapunov function is computed using a Massera-like construction adapted to multiple local attractors. In the final step this candidate Lyapunov function is interpolated over the simplices of a simplicial complex and, by checking certain inequalities at the vertices of the complex, we can identify the region in which the Lyapunov function is decreasing along system trajectories. The resulting Lyapunov function gives information on the qualitative behavior of the dynamics, including lower bounds on the basins of attraction of the individual local attractors. We develop the theory in detail and present numerical examples demonstrating the applicability of our method

    Initiation of V(D)J Recombination by Dβ-Associated Recombination Signal Sequences: A Critical Control Point in TCRβ Gene Assembly

    Get PDF
    T cell receptor (TCR) β gene assembly by V(D)J recombination proceeds via successive Dβ-to-Jβ and Vβ-to-DJβ rearrangements. This two-step process is enforced by a constraint, termed beyond (B)12/23, which prohibits direct Vβ-to-Jβ rearrangements. However the B12/23 restriction does not explain the order of TCRβ assembly for which the regulation remains an unresolved issue. The initiation of V(D)J recombination consists of the introduction of single-strand DNA nicks at recombination signal sequences (RSSs) containing a 12 base-pairs spacer. An RSS containing a 23 base-pairs spacer is then captured to form a 12/23 RSSs synapse leading to coupled DNA cleavage. Herein, we probed RSS nicks at the TCRβ locus and found that nicks were only detectable at Dβ-associated RSSs. This pattern implies that Dβ 12RSS and, unexpectedly, Dβ 23RSS initiate V(D)J recombination and capture their respective Vβ or Jβ RSS partner. Using both in vitro and in vivo assays, we further demonstrate that the Dβ1 23RSS impedes cleavage at the adjacent Dβ1 12RSS and consequently Vβ-to-Dβ1 rearrangement first requires the Dβ1 23RSS excision. Altogether, our results provide the molecular explanation to the B12/23 constraint and also uncover a ‘Dβ1 23RSS-mediated’ restriction operating beyond chromatin accessibility, which directs Dβ1 ordered rearrangements

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function
    corecore