5,137 research outputs found

    On the Unicity of Smartphone Applications

    Get PDF
    Prior works have shown that the list of apps installed by a user reveal a lot about user interests and behavior. These works rely on the semantics of the installed apps and show that various user traits could be learnt automatically using off-the-shelf machine-learning techniques. In this work, we focus on the re-identifiability issue and thoroughly study the unicity of smartphone apps on a dataset containing 54,893 Android users collected over a period of 7 months. Our study finds that any 4 apps installed by a user are enough (more than 95% times) for the re-identification of the user in our dataset. As the complete list of installed apps is unique for 99% of the users in our dataset, it can be easily used to track/profile the users by a service such as Twitter that has access to the whole list of installed apps of users. As our analyzed dataset is small as compared to the total population of Android users, we also study how unicity would vary with larger datasets. This work emphasizes the need of better privacy guards against collection, use and release of the list of installed apps.Comment: 10 pages, 9 Figures, Appeared at ACM CCS Workshop on Privacy in Electronic Society (WPES) 201

    Response of Soybean Grown on a Claypan Soil in Southeastern Kansas to the Residual of Different Plant Nutrient Sources and Tillage

    Get PDF
    The residual effects of turkey litter and fertilizer amendments applied in previous years had little effect on the yield, yield components, and dry matter production of the following soybean crop grown in 2014

    Functional consequences for primary human alveolar macrophages following treatment with long, but not short, multiwalled carbon nanotubes

    Get PDF
    Sinbad Sweeney, Davide Grandolfo, Pakatip Ruenraroengsak, Teresa D TetleyLung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, London, UKPurpose: Multiwalled carbon nanotubes (MWCNTs) are a potential human health hazard, primarily via inhalation. In the lung, alveolar macrophages (AMs) provide the first line of immune cellular defense against inhaled materials. We hypothesized that, 1 and 5 days after treating AMs with short (0.6 µm in length; MWCNT-0.6 µm) and long (20 µm in length; MWCNT-20 µm) MWCNTs for 24 hours, AMs would exhibit increased markers of adverse bioreactivity (cytokine release and reactive oxygen species generation) while also having a modified functional ability (phagocytosis and migration).Methods: Primary human AMs were treated with short and long MWCNTs for 24 hours, 1 and 5 days after which toxicity end points, including cell death, reactive oxygen species generation, and inflammatory mediator release, were measured. AM functional end points involving phagocytic ability and migratory capacity were also measured.Results: AM viability was significantly decreased at 1 and 5 days after treatment with MWCNT-20 µm, while superoxide levels and inflammatory mediator release were significantly increased. At the same time, there was reduced phagocytosis and migratory capacity alongside increased expression of MARCO; this coincided with frustrated phagocytosis observed by scanning electron microscopy. In contrast, the adverse bioreactivity of the shorter MWCNT-0.6 µm with AMs (and any resulting reduction in AM functional ability) was substantially less marked or absent altogether.Conclusion: This study shows that after 24-hour treatment with long, but not short, MWCNTs, AM function is severely affected up to 5 days after the initial exposure. This has potentially significant pathophysiological consequences for individuals who may be intentionally (via therapeutic applications) or unintentionally exposed to these nanomaterials.Keywords: nanotechnology, MWCNTs, alveolar macrophages, cytokines, phagocytosis, bioreactivit

    On the Complexity of tt-Closeness Anonymization and Related Problems

    Full text link
    An important issue in releasing individual data is to protect the sensitive information from being leaked and maliciously utilized. Famous privacy preserving principles that aim to ensure both data privacy and data integrity, such as kk-anonymity and ll-diversity, have been extensively studied both theoretically and empirically. Nonetheless, these widely-adopted principles are still insufficient to prevent attribute disclosure if the attacker has partial knowledge about the overall sensitive data distribution. The tt-closeness principle has been proposed to fix this, which also has the benefit of supporting numerical sensitive attributes. However, in contrast to kk-anonymity and ll-diversity, the theoretical aspect of tt-closeness has not been well investigated. We initiate the first systematic theoretical study on the tt-closeness principle under the commonly-used attribute suppression model. We prove that for every constant tt such that 0t<10\leq t<1, it is NP-hard to find an optimal tt-closeness generalization of a given table. The proof consists of several reductions each of which works for different values of tt, which together cover the full range. To complement this negative result, we also provide exact and fixed-parameter algorithms. Finally, we answer some open questions regarding the complexity of kk-anonymity and ll-diversity left in the literature.Comment: An extended abstract to appear in DASFAA 201

    Derivation of a dynamic model of the kinetics of nitrogen uptake throughout the growth of lettuce : calibration and validation

    Get PDF
    A kinetic model of nitrogen (N) uptake throughout growth was developed for lettuce cultivated in nutrient solution under varying natural light conditions. The model couples nitrogen uptake with dry matter accumulation using a two-compartment mechanistic approach, incorporating structural and non-structural pools. Maximum nitrogen uptake rates are assumed to decline with shoot dry weight, to allow for the effects of plant age. The model was parameterized using data from the literature, and calibrated for differences in light intensity using an optimization algorithm utilizing data from three experiments in different growing seasons. The calibrated model was validated against the data from two independent experiments conducted under different light conditions. Results showed that the model made good predictions of nitrogen uptake by plants from seedlings to maturity under fluctuating light levels in a glasshouse. Plants grown at a higher light intensity showed larger maximum nitrogen uptake rates, but the effect of light intensity declined towards plant maturity

    Application of activated barrier hopping theory to viscoplastic modeling of glassy polymers

    Get PDF
    YesAn established statistical mechanical theory of amorphous polymer deformation has been incorporated as a plastic mechanism into a constitutive model and applied to a range of polymer mechanical deformations. The temperature and rate dependence of the tensile yield of PVC, as reported in early studies, has been modeled to high levels of accuracy. Tensile experiments on PET reported here are analyzed similarly and good accuracy is also achieved. The frequently observed increase in the gradient of the plot of yield stress against logarithm of strain rate is an inherent feature of the constitutive model. The form of temperature dependence of the yield that is predicted by the model is found to give an accurate representation. The constitutive model is developed in two-dimensional form and implemented as a user-defined subroutine in the finite element package ABAQUS. This analysis is applied to the tensile experiments on PET, in some of which strain is localized in the form of shear bands and necks. These deformations are modeled with partial success, though adiabatic heating of the instability causes inaccuracies for this isothermal implementation of the model. The plastic mechanism has advantages over the Eyring process, is equally tractable,and presents no particular difficulties in implementation with finite elements.F. Boutenel acknowledges an Erasmus Programme Scholarshi

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear

    Full text link
    [EN] Purpose. To compare the ionic permeability using the ionoflux method of new and worn samples of a silicone hydrogel contact lens material. Methods. An ionoflux experimental setup was established to measure the ionic permeability (NaCl) of soft contact lenses. Samples of a silicone hydrogel lens (Comfilcon A, Coopervision, Pleasanton, CA) with optical powers of -1.00, -1.50 and -4.75 diopters (D) were used in this study. Three samples of each power were measured after being worn for one month on a daily wear basis. Lenses were cleaned and disinfected every night using multipurpose disinfecting solutions. Three samples of new lenses from the same batch and the same optical power were also measured to evaluate the effect of lens wear on the ionic permeability of the lens material. Before measurement, the lenses were equilibrated with a 1 M NaCl solution during one week before of each measurement. Results. Lens power had minimal effect on the ionic permeability of a modern silicone hydrogel contact lens with the -1.00 lens having a 15% lower permeability compared to the other two lenses. After one month of lens wear the apparent ionic permeability for lenses with -1.50 D decreased by 15%. In the case of -1.00 and -4.75 D lenses there was a decrease of 26%. Conclusions. The ionic permeability of silicone hydrogel lenses of different optical powers was not significantly different. Worn lenses present a significant reduction of the ionic permeability after a month of wear. The potential effect this reduction on lens movement and discomfort associated to lens wear should be further evaluated.The authors have no proprietary interest in any of the materials mentioned in this article. This work was funded in part by FEDER through the COMPTETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of projects PTDC/SAU-BEB/098391/2008, PTDC/SAU-BEB/098392/2008 and the Strategic Project PEST-C/FIS/UI607/2011.Ferreira Da Silva, AR.; Compañ Moreno, V.; Gonzalez-Meijome, JM. (2015). Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear. Materials Research Express. 2(6). https://doi.org/10.1088/2053-1591/2/6/065007S26Yoon, S. C., & Jhon, M. S. (1982). The transport phenomena of some model solutes through postcrosslinked poly(2-hydroxyethyl methacrylate) membranes with different tactic precursors. Journal of Applied Polymer Science, 27(8), 3133-3149. doi:10.1002/app.1982.070270834Yasuda, H., Lamaze, C. E., & Ikenberry, L. D. (1968). Die Makromolekulare Chemie, 118(1), 19-35. doi:10.1002/macp.1968.021180102MURPHY, S., HAMILTON, C., & TIGHE, B. (1988). Synthetic hydrogels: 5. Transport processes in 2-hydroxyethyl methacrylate copolymers. Polymer, 29(10), 1887-1893. doi:10.1016/0032-3861(88)90407-7Nicolson, P. C., & Vogt, J. (2001). Soft contact lens polymers: an evolution. Biomaterials, 22(24), 3273-3283. doi:10.1016/s0142-9612(01)00165-xMonticelli, M. V., Chauhan, A., & Radke, C. J. (2005). The Effect of Water Hydraulic Permeability on the Settling of a Soft Contact Lens on the Eye. Current Eye Research, 30(5), 329-336. doi:10.1080/02713680590934085Guan, L., Jiménez, M. E. G., Walowski, C., Boushehri, A., Prausnitz, J. M., & Radke, C. J. (2011). Permeability and partition coefficient of aqueous sodium chloride in soft contact lenses. Journal of Applied Polymer Science, 122(3), 1457-1471. doi:10.1002/app.33336Cheng, M.-L., & Sun, Y.-M. (2005). Observation of the solute transport in the permeation through hydrogel membranes by using FTIR-microscopy. Journal of Membrane Science, 253(1-2), 191-198. doi:10.1016/j.memsci.2005.01.017CHHABRA, M., PRAUSNITZ, J., & RADKE, C. (2007). A single-lens polarographic measurement of oxygen permeability (Dk) for hypertransmissible soft contact lenses. Biomaterials, 28(30), 4331-4342. doi:10.1016/j.biomaterials.2007.06.024González-Méijome, J. M., López-Alemany, A., Almeida, J. B., & Parafita, M. A. (2009). Surface AFM microscopy of unworn and worn samples of silicone hydrogel contact lenses. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B(1), 75-82. doi:10.1002/jbm.b.31153González-Méijome, J. M., López-Alemany, A., Almeida, J. B., & Parafita, M. A. (2008). Dynamic in vitro dehydration patterns of unworn and worn silicone hydrogel contact lenses. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B(1), 250-258. doi:10.1002/jbm.b.31279Pozuelo, J., Compañ, V., González-Méijome, J. M., González, M., & Mollá, S. (2014). Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. Journal of Membrane Science, 452, 62-72. doi:10.1016/j.memsci.2013.10.010Wolffsohn, J. S., Hunt, O. A., & Basra, A. K. (2009). Simplified recording of soft contact lens fit. Contact Lens and Anterior Eye, 32(1), 37-42. doi:10.1016/j.clae.2008.12.00
    corecore