3,383 research outputs found

    Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors

    Full text link
    A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure

    Tuning of structure inversion asymmetry by the δ\delta-doping position in (001)-grown GaAs quantum wells

    Get PDF
    Structure and bulk inversion asymmetry in doped (001)-grown GaAs quantum wells is investigated by applying the magnetic field induced photogalvanic effect. We demonstrate that the structure inversion asymmetry (SIA) can be tailored by variation of the delta-doping layer position. Symmetrically-doped structures exhibit a substantial SIA due to impurity segregation during the growth process. Tuning the SIA by the delta-doping position we grow samples with almost equal degrees of structure and bulk inversion asymmetry.Comment: 4 pages 2 figure

    Algorithms and literate programs for weighted low-rank approximation with missing data

    No full text
    Linear models identification from data with missing values is posed as a weighted low-rank approximation problem with weights related to the missing values equal to zero. Alternating projections and variable projections methods for solving the resulting problem are outlined and implemented in a literate programming style, using Matlab/Octave's scripting language. The methods are evaluated on synthetic data and real data from the MovieLens data sets

    Non-universal dynamics of dimer growing interfaces

    Full text link
    A finite temperature version of body-centered solid-on-solid growth models involving attachment and detachment of dimers is discussed in 1+1 dimensions. The dynamic exponent of the growing interface is studied numerically via the spectrum gap of the underlying evolution operator. The finite size scaling of the latter is found to be affected by a standard surface tension term on which the growth rates depend. This non-universal aspect is also corroborated by the growth behavior observed in large scale simulations. By contrast, the roughening exponent remains robust over wide temperature ranges.Comment: 11 pages, 7 figures. v2 with some slight correction

    Solving the Richardson equations for Fermions

    Full text link
    Forty years ago Richardson showed that the eigenstates of the pairing Hamiltonian with constant interaction strength can be calculated by solving a set of non-linear coupled equations. However, in the case of Fermions these equations lead to singularities which made them very hard to solve. This letter explains how these singularities can be avoided through a change of variables making the Fermionic pairing problem numerically solvable for arbitrary single particle energies and degeneracies.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Hydrodynamics of flagellated microswimmers near free-slip interfaces

    Get PDF
    The hydrodynamics of a flagellated microorganism is investigated when swimming close to a planar free-slip surface by means of numerical solu- tions of the Stokes equations obtained via a Boundary Element Method. Depending on the initial condition, the swimmer can either escape from the free-slip surface or collide with the boundary. Interestingly, the mi- croorganism does not exhibit a stable orbit. Independently of escape or attraction to the interface, close to a free-slip surface, the swimmer fol- lows a counter-clockwise trajectory, in agreement with experimental find- ings, [15]. The hydrodynamics is indeed modified by the free-surface. In fact, when the same swimmer moves close to a no-slip wall, a set of initial conditions exists which result in stable orbits. Moreover when moving close to a free-slip or a no-slip boundary the swimmer assumes a different orientation with respect to its trajectory. Taken together, these results contribute to shed light on the hydrodynamical behaviour of microorgan- isms close to liquid-air interfaces which are relevant for the formation of interfacial biofilms of aerobic bacteria

    Electric Dipole Moments and Polarizability in the Quark-Diquark Model of the Neutron

    Full text link
    For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, viewed as a bound state of ten electrons two protons and an oxygen nucleus, both have zero mean electric dipole moments. Yet, the water molecule is said to have a nonzero dipole moment strength d=eΛd=e\Lambda with ΛH2O0.385 A˙\Lambda_{H_2O} \approx 0.385\ \dot{A}. The neutron may also be said to have an electric dipole moment strength with Λneutron0.612 fm\Lambda_{neutron} \approx 0.612\ fm. The neutron analysis can be made experimentally consistent, if one employs a quark-diquark model of neutron structure.Comment: four pages, two figure

    Network connectivity during mergers and growth: optimizing the addition of a module

    Full text link
    The principal eigenvalue λ\lambda of a network's adjacency matrix often determines dynamics on the network (e.g., in synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or attack) and is therefore a good indicator for how ``strongly'' a network is connected. We study how λ\lambda is modified by the addition of a module, or community, which has broad applications, ranging from those involving a single modification (e.g., introduction of a drug into a biological process) to those involving repeated additions (e.g., power-grid and transit development). We describe how to optimally connect the module to the network to either maximize or minimize the shift in λ\lambda, noting several applications of directing dynamics on networks.Comment: 7 pages, 5 figure

    Space-Time Approach to Scattering from Many Body Systems

    Get PDF
    We present scattering from many body systems in a new light. In place of the usual van Hove treatment, (applicable to a wide range of scattering processes using both photons and massive particles) based on plane waves, we calculate the scattering amplitude as a space-time integral over the scattering sample for an incident wave characterized by its correlation function which results from the shaping of the wave field by the apparatus. Instrument resolution effects - seen as due to the loss of correlation caused by the path differences in the different arms of the instrument are automatically included and analytic forms of the resolution function for different instruments are obtained. The intersection of the moving correlation volumes (those regions where the correlation functions are significant) associated with the different elements of the apparatus determines the maximum correlation lengths (times) that can be observed in a sample, and hence, the momentum (energy) resolution of the measurement. This geometrical picture of moving correlation volumes derived by our technique shows how the interaction of the scatterer with the wave field shaped by the apparatus proceeds in space and time. Matching of the correlation volumes so as to maximize the intersection region yields a transparent, graphical method of instrument design. PACS: 03.65.Nk, 3.80 +r, 03.75, 61.12.BComment: Latex document with 6 fig
    corecore