We present scattering from many body systems in a new light. In place of the
usual van Hove treatment, (applicable to a wide range of scattering processes
using both photons and massive particles) based on plane waves, we calculate
the scattering amplitude as a space-time integral over the scattering sample
for an incident wave characterized by its correlation function which results
from the shaping of the wave field by the apparatus. Instrument resolution
effects - seen as due to the loss of correlation caused by the path differences
in the different arms of the instrument are automatically included and analytic
forms of the resolution function for different instruments are obtained. The
intersection of the moving correlation volumes (those regions where the
correlation functions are significant) associated with the different elements
of the apparatus determines the maximum correlation lengths (times) that can be
observed in a sample, and hence, the momentum (energy) resolution of the
measurement. This geometrical picture of moving correlation volumes derived by
our technique shows how the interaction of the scatterer with the wave field
shaped by the apparatus proceeds in space and time. Matching of the correlation
volumes so as to maximize the intersection region yields a transparent,
graphical method of instrument design. PACS: 03.65.Nk, 3.80 +r, 03.75, 61.12.BComment: Latex document with 6 fig