research

Electric Dipole Moments and Polarizability in the Quark-Diquark Model of the Neutron

Abstract

For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, viewed as a bound state of ten electrons two protons and an oxygen nucleus, both have zero mean electric dipole moments. Yet, the water molecule is said to have a nonzero dipole moment strength d=eΛd=e\Lambda with ΛH2O0.385 A˙\Lambda_{H_2O} \approx 0.385\ \dot{A}. The neutron may also be said to have an electric dipole moment strength with Λneutron0.612 fm\Lambda_{neutron} \approx 0.612\ fm. The neutron analysis can be made experimentally consistent, if one employs a quark-diquark model of neutron structure.Comment: four pages, two figure

    Similar works

    Full text

    thumbnail-image

    Available Versions