11,913 research outputs found

    Molecular Dynamics Simulation of Vascular Network Formation

    Full text link
    Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells' motion is governed by the gradient of the concentration of a chemical substance that they produce (chemotaxis). The typical time of degradation of the chemical substance introduces a characteristic length in the system. We show that point-like model cells form network resembling structures tuned by this characteristic length, before collapsing altogether. Successively, we improve the non-realistic point-like model cells by introducing an isotropic strong repulsive force between them and a velocity dependent force mimicking the observed peculiarity of endothelial cells to preserve the direction of their motion (persistence). This more realistic model does not show a clear network formation. We ascribe this partial fault in reproducing the experiments to the static geometry of our model cells that, in reality, change their shapes by elongating toward neighboring cells.Comment: 10 pages, 3 figures, 2 of which composite with 8 pictures each. Accepted on J.Stat.Mech. (2009). Appeared at the poster session of StatPhys23, Genoa, Italy, July 13 (2007

    Phase diagram of softly repulsive systems: The Gaussian and inverse-power-law potentials

    Full text link
    We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behavior of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range of densities and temperatures, being ruled by the competition between the body-centered-cubic (BCC) and face-centered-cubic (FCC) crystalline structures and the fluid phase. We confirm the existence of a reentrant BCC phase in the phase diagram of the Gaussian-core model, just above the triple point. We also trace the BCC-FCC coexistence line of the inverse-power-law model as a function of the power exponent nn and relate the common features in the phase diagrams of such systems to the softness degree of the interaction.Comment: 22 pages, 8 figure

    Dark Matter Axions Revisited

    Get PDF
    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae, and assume an inflationary scenario and standard cosmology. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma=67±2μeVm_a =67\pm2{\rm \mu eV} makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma<15meVm_a < 15{\rm meV} provided a specific value of the initial misalignment angle θi\theta_i is chosen in correspondence to a given value of its mass mam_a. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi\theta_i.Comment: 14 pages, 3 figure

    Quantum fidelity and quantum phase transitions in matrix product states

    Full text link
    Matrix product states, a key ingredient of numerical algorithms widely employed in the simulation of quantum spin chains, provide an intriguing tool for quantum phase transition engineering. At critical values of the control parameters on which their constituent matrices depend, singularities in the expectation values of certain observables can appear, in spite of the analyticity of the ground state energy. For this class of generalized quantum phase transitions we test the validity of the recently introduced fidelity approach, where the overlap modulus of ground states corresponding to slightly different parameters is considered. We discuss several examples, successfully identifying all the present transitions. We also study the finite size scaling of fidelity derivatives, pointing out its relevance in extracting critical exponents.Comment: 7 pages, 3 figure

    Coarsening scenarios in unstable crystal growth

    Full text link
    Crystal surfaces may undergo thermodynamical as well kinetic, out-of-equilibrium instabilities. We consider the case of mound and pyramid formation, a common phenomenon in crystal growth and a long-standing problem in the field of pattern formation and coarsening dynamics. We are finally able to attack the problem analytically and get rigorous results. Three dynamical scenarios are possible: perpetual coarsening, interrupted coarsening, and no coarsening. In the perpetual coarsening scenario, mound size increases in time as L=t^n, where the coasening exponent is n=1/3 when faceting occurs, otherwise n=1/4.Comment: Changes in the final part. Accepted for publication in Phys. Rev. Let

    Classical limit of the quantum Zeno effect

    Full text link
    The evolution of a quantum system subjected to infinitely many measurements in a finite time interval is confined in a proper subspace of the Hilbert space. This phenomenon is called "quantum Zeno effect": a particle under intensive observation does not evolve. This effect is at variance with the classical evolution, which obviously is not affected by any observations. By a semiclassical analysis we will show that the quantum Zeno effect vanishes at all orders, when the Planck constant tends to zero, and thus it is a purely quantum phenomenon without classical analog, at the same level of tunneling.Comment: 10 pages, 2 figure

    Virtual Quantum Subsystems

    Get PDF
    The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A\cal A of operationally relevant observables. The algebraic structure of A\cal A selects a preferred tensor product structure i.e., a partition into subsystems. The notion of compoundness for quantum system is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomiesComment: Presentation improved, to appear in PRL. 4 Pages, RevTe

    Power-Law Time Distribution of Large Earthquakes

    Full text link
    We study the statistical properties of time distribution of seimicity in California by means of a new method of analysis, the Diffusion Entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent μ=2.06±0.01\mu=2.06 \pm 0.01. We propose the Long-Range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.Comment: 4 pages, 3 figures. Revised version accepted for publication. Typos corrected, more detailed discussion on the method used, refs added. Phys. Rev. Lett. (2003) in pres

    Graph hypersurfaces and a dichotomy in the Grothendieck ring

    Get PDF
    The subring of the Grothendieck ring of varieties generated by the graph hypersurfaces of quantum field theory maps to the monoid ring of stable birational equivalence classes of varieties. We show that the image of this map is the copy of Z generated by the class of a point. Thus, the span of the graph hypersurfaces in the Grothendieck ring is nearly killed by setting the Lefschetz motive L to zero, while it is known that graph hypersurfaces generate the Grothendieck ring over a localization of Z[L] in which L becomes invertible. In particular, this shows that the graph hypersurfaces do not generate the Grothendieck ring prior to localization. The same result yields some information on the mixed Hodge structures of graph hypersurfaces, in the form of a constraint on the terms in their Deligne-Hodge polynomials.Comment: 8 pages, LaTe
    • …
    corecore