Endothelial cells are responsible for the formation of the capillary blood
vessel network. We describe a system of endothelial cells by means of
two-dimensional molecular dynamics simulations of point-like particles. Cells'
motion is governed by the gradient of the concentration of a chemical substance
that they produce (chemotaxis). The typical time of degradation of the chemical
substance introduces a characteristic length in the system. We show that
point-like model cells form network resembling structures tuned by this
characteristic length, before collapsing altogether. Successively, we improve
the non-realistic point-like model cells by introducing an isotropic strong
repulsive force between them and a velocity dependent force mimicking the
observed peculiarity of endothelial cells to preserve the direction of their
motion (persistence). This more realistic model does not show a clear network
formation. We ascribe this partial fault in reproducing the experiments to the
static geometry of our model cells that, in reality, change their shapes by
elongating toward neighboring cells.Comment: 10 pages, 3 figures, 2 of which composite with 8 pictures each.
Accepted on J.Stat.Mech. (2009). Appeared at the poster session of
StatPhys23, Genoa, Italy, July 13 (2007