The subring of the Grothendieck ring of varieties generated by the graph
hypersurfaces of quantum field theory maps to the monoid ring of stable
birational equivalence classes of varieties. We show that the image of this map
is the copy of Z generated by the class of a point. Thus, the span of the graph
hypersurfaces in the Grothendieck ring is nearly killed by setting the
Lefschetz motive L to zero, while it is known that graph hypersurfaces generate
the Grothendieck ring over a localization of Z[L] in which L becomes
invertible. In particular, this shows that the graph hypersurfaces do not
generate the Grothendieck ring prior to localization. The same result yields
some information on the mixed Hodge structures of graph hypersurfaces, in the
form of a constraint on the terms in their Deligne-Hodge polynomials.Comment: 8 pages, LaTe