2,626 research outputs found

    Knitting distributed cluster state ladders with spin chains

    Full text link
    There has been much recent study on the application of spin chains to quantum state transfer and communication. Here we discuss the utilisation of spin chains (set up for perfect quantum state transfer) for the knitting of distributed cluster state structures, between spin qubits repeatedly injected and extracted at the ends of the chain. The cluster states emerge from the natural evolution of the system across different excitation number sectors. We discuss the decohering effects of errors in the injection and extraction process as well as the effects of fabrication and random errors.Comment: To be published in PRA. v2 includes minor corrections as well as an added discussion on refocussin

    Effect of perturbations on information transfer in spin chains

    Full text link
    Spin chains have been proposed as a reliable and convenient way of transferring information and entanglement in a quantum computational context. Nonetheless, it has to be expected that any physical implementation of these systems will be subject to several perturbative factors which could potentially diminish the transfer quality. In this paper, we investigate a number of possible fabrication defects in the spin chains themselves as well as the effect of non-synchronous or imperfect input operations, with a focus on the case of multiple excitation/qubit transfer. We consider both entangled and unentangled states, and in particular the transfer of an entangled pair of adjacent spins at one end of a chain under the mirroring rule and also the creation of entanglement resulting from injection at both end spins.Comment: Journal version fixes last typo

    Freezing distributed entanglement in spin chains

    Full text link
    We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems -- including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules or atoms.Comment: 5 pages, to appear in Phys. Rev. A (Rapid Communication

    Geometry induced entanglement transitions in nanostructures

    Full text link
    We model quantum dot nanostructures using a one-dimensional system of two interacting electrons. We show that strong and rapid variations may be induced in the spatial entanglement by varying the nanostructure geometry. We investigate the position-space information entropy as an indicator of the entanglement in this system. We also consider the expectation value of the Coulomb interaction and the ratio of this expectation to the expectation of the confining potential and their link to the entanglement. We look at the first derivative of the entanglement and the position-space information entropy to infer information about a possible quantum phase transition.Comment: 3 pages, 2 figures, to appear in Journal of Applied Physic

    Comparing persistence diagrams through complex vectors

    Get PDF
    The natural pseudo-distance of spaces endowed with filtering functions is precious for shape classification and retrieval; its optimal estimate coming from persistence diagrams is the bottleneck distance, which unfortunately suffers from combinatorial explosion. A possible algebraic representation of persistence diagrams is offered by complex polynomials; since far polynomials represent far persistence diagrams, a fast comparison of the coefficient vectors can reduce the size of the database to be classified by the bottleneck distance. This article explores experimentally three transformations from diagrams to polynomials and three distances between the complex vectors of coefficients.Comment: 11 pages, 4 figures, 2 table

    Hubbard model as an approximation to the entanglement in nanostructures

    Get PDF
    We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction. We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between interaction and potential shape in the quantum-well system dictates the position and size of the entanglement maxima and the agreement with the theoretical limits. Finally, we calculate the spatial entanglement for the quantum-well system and compare it to its average single-site entanglement

    Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    Full text link
    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform vs. non-uniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a new representation of the controlled qubit evolution, where the resulting decoherence behaviour is directly expressed in terms of the free evolution. Simple analytical expressions are given to approximate the long- and short- term coherence behaviour for both ohmic and supra-ohmic environments. We focus on systems with physical constraints on achievable time delays, with emphasis on pure dephasing of excitonic qubits in quantum dots. Our analysis shows that little advantage of high-level decoupling schemes based on concatenated or optimal design is to be expected if operational constraints prevent pulses to be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic echo protocols can offer significantly improved coherence preservation in realistic parameter regimes.Comment: 13 figures,1 tabl

    Effect of confinement potential geometry on entanglement in quantum dot-based nanostructures

    Full text link
    We calculate the spatial entanglement between two electrons trapped in a nanostructure for a broad class of confinement potentials, including single and double quantum dots, and core-shell quantum dot structures. By using a parametrized confinement potential, we are able to switch from one structure to the others with continuity and to analyze how the entanglement is influenced by the changes in the confinement geometry. We calculate the many-body wave function by `exact' diagonalization of the time independent Schr\"odinger equation. We discuss the relationship between the entanglement and specific cuts of the wave function, and show that the wave function at a single highly symmetric point could be a good indicator for the entanglement content of the system. We analyze the counterintuitive relationship between spatial entanglement and Coulomb interaction, which connects maxima (minima) of the first to minima (maxima) of the latter. We introduce a potential quantum phase transition which relates quantum states characterized by different spatial topology. Finally we show that by varying shape, range and strength of the confinement potential, it is possible to induce strong and rapid variations of the entanglement between the two electrons. This property may be used to tailor nanostructures according to the level of entanglement required by a specific application.Comment: 10 pages, 8 figures and 1 tabl

    Entanglement and density-functional theory: testing approximations on Hooke's atom

    Full text link
    We present two methods of calculating the spatial entanglement of an interacting electron system within the framework of density-functional theory. These methods are tested on the model system of Hooke's atom for which the spatial entanglement can be calculated exactly. We analyse how the strength of the confining potential affects the spatial entanglement and how accurately the methods that we introduced reproduce the exact trends. We also compare the results with the outcomes of standard first-order perturbation methods. The accuracies of energies and densities when using these methods are also considered.Comment: 14 pages with 18 figures; corrected typos, corrected expression for first-order energy in section VI and consequently Fig.13, conclusions and other results unaffecte

    Intrinsic electric field effects on few-particle interactions in coupled GaN quantum dots

    Get PDF
    We study the multi-exciton optical spectrum of vertically coupled GaN/AlN quantum dots with a realistic three-dimensional direct-diagonalization approach for the description of few-particle Coulomb-correlated states. We present a detailed analysis of the fundamental properties of few-particle/exciton interactions peculiar of nitride materials. The giant intrinsic electric fields and the high electron/hole effective masses give rise to different effects compared to GaAs-based quantum dots: intrinsic exciton-exciton coupling, non-molecular character of coupled dot exciton wavefunction, strong dependence of the oscillator strength on the dot height, large ground state energy shift for dots separated by different barriers. Some of these effects make GaN/AlN quantum dots interesting candidates in quantum information processing.Comment: 23 pages, 8 figures, 1 tabl
    • …
    corecore