201 research outputs found

    Quantum engineering at the silicon surface using dangling bonds.

    Get PDF
    Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy

    Magnetic Anisotropy of Single Mn Acceptors in GaAs in an External Magnetic Field

    Get PDF
    We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported by theoretical calculations based on a tightbinding model of Mn acceptors in GaAs. For Mn acceptors on the (110) surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantly the magnetic anisotropy landscape. However the acceptor hole wavefunction is strongly localized around the Mn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed on deeper layers below the surface, the acceptor hole wavefunction is more delocalized and the corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However the magnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis. We predict that substantially larger magnetic fields are required to observe a significant field-dependence of the tunneling current for impurities located several layers below the GaAs surface.Comment: Non

    Investigating individual arsenic dopant atoms in silicon using low-temperature scanning tunnelling microscopy

    Get PDF
    We study subsurface arsenic dopants in a hydrogen-terminated Si(001) sample at 77 K, using scanning tunnelling microscopy and spectroscopy. We observe a number of different dopant-related features that fall into two classes, which we call As1 and As2. When imaged in occupied states, the As1 features appear as anisotropic protrusions superimposed on the silicon surface topography and have maximum intensities lying along particular crystallographic orientations. In empty-state images the features all exhibit long-range circular protrusions. The images are consistent with buried dopants that are in the electrically neutral (D0) charge state when imaged in filled states, but become positively charged (D+) through electrostatic ionization when imaged under empty-state conditions, similar to previous observations of acceptors in GaAs. Density functional theory calculations predict that As dopants in the third layer of the sample induce two states lying just below the conduction-band edge, which hybridize with the surface structure creating features with the surface symmetry consistent with our STM images. The As2 features have the surprising characteristic of appearing as a protrusion in filled-state images and an isotropic depression in empty-state images, suggesting they are negatively charged at all biases. We discuss the possible origins of this feature

    Reaction paths of phosphine dissociation on silicon (001)

    Get PDF
    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH3) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH2+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments

    Evolution of breeding plumages in birds: A multiple-step pathway to seasonal dichromatism in New World warblers (Aves: Parulidae)

    Get PDF
    Ecology and Evolution published by John Wiley & Sons Ltd Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life-history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life-history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life-history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life-history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two-step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life-history strategies and a birds\u27 environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration

    Towards the fabrication of phosphorus qubits for a silicon quantum computer

    Full text link
    The quest to build a quantum computer has been inspired by the recognition of the formidable computational power such a device could offer. In particular silicon-based proposals, using the nuclear or electron spin of dopants as qubits, are attractive due to the long spin relaxation times involved, their scalability, and the ease of integration with existing silicon technology. Fabrication of such devices however requires atomic scale manipulation - an immense technological challenge. We demonstrate that it is possible to fabricate an atomically-precise linear array of single phosphorus bearing molecules on a silicon surface with the required dimensions for the fabrication of a silicon-based quantum computer. We also discuss strategies for the encapsulation of these phosphorus atoms by subsequent silicon crystal growth.Comment: To Appear in Phys. Rev. B Rapid Comm. 5 pages, 5 color figure

    Bacteria are important dimethylsulfoniopropionate producers in coastal sediments

    Get PDF
    Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients, with roles in global sulfur cycling, atmospheric chemistry, signalling and, potentially, climate regulation. DMSP production was previously thought to be an oxic and photic process, mainly confined to the surface oceans. However, here we show that DMSP concentrations and DMSP/DMS synthesis rates were higher in surface marine sediment from e.g., saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and previously unknown DMSP-producers were identified. Most DMSP-producing isolates contained dsyB, but some alphaproteobacteria, gammaproteobacteria and actinobacteria utilised a methionine methylation pathway independent of DsyB, previously only associated with higher plants. These bacteria contained a methionine methyltransferase ‘mmtN’ gene - a marker for bacterial DMSP synthesis via this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all tested seawater samples and Tara Oceans bacterioplankton datasets, but were far more abundant in marine surface sediment. Approximately 108 bacteria per gram of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth’s surface, are environments with high DMSP and DMS productivity, and that bacteria are important producers within them

    The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Get PDF
    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis
    corecore