118 research outputs found

    Communal nesting differentially attenuates the impact of pre-weaning social isolation on behavior in male and female rats during adolescence and adulthood

    Get PDF
    IntroductionEarly social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors.MethodsThis study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring.ResultsWe found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes.DiscussionOverall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment

    ISPD mutations account for a small proportion of Italian Limb Girdle Muscular Dystrophy cases

    Get PDF
    Background: Limb Girdle Muscular Dystrophy (LGMD), caused by defective a\u3b1-dystroglycan (a\u3b1-DG) glycosylation, was recently associated with mutations in Isoprenoid synthase domain-containing (ISPD) and GDP-mannose pyrophosphorylase B (GMPPB) genes. The frequency of ISPD and GMPPB gene mutations in the LGMD population is unknown. Methods: We investigated the contributions of ISPD and GMPPB genes in a cohort of 174 Italian patients with LGMD, including 140 independent probands. Forty-one patients (39 probands) from this cohort had not been genetically diagnosed. The contributions of ISPD and GMPPB were estimated by sequential a\u3b1-DG immunohistochemistry (IHC) and mutation screening in patients with documented a\u3b1-DG defect, or by direct DNA sequencing of both genes when muscle tissue was unavailable. Results: We performed a\u3b1-DG IHC in 27/39 undiagnosed probands: 24 subjects had normal a\u3b1-DG expression, two had a partial deficiency, and one exhibited a complete absence of signal. Direct sequencing of ISPD and GMPPB revealed two heterozygous ISPD mutations in the individual who lacked a\u3b1-DG IHC signal: c.836-5 T > G (which led to the deletion of exon 6 and the production of an out-of-frame transcript) and c.676 T > C (p.Tyr226His). This patient presented with sural hypertrophy and tip-toed walking at 5 years, developed moderate proximal weakness, and was fully ambulant at 42 years. The remaining 12/39 probands did not exhibit pathogenic sequence variation in either gene. Conclusion:ISPD mutations are a rare cause of LGMD in the Italian population, accounting for less than 1 % of the entire cohort studied (FKRP mutations represent 10 %), while GMPPB mutations are notably absent in this patient sample. These data suggest that the genetic heterogeneity of LGMD with and without a\u3b1-DG defects is greater than previously realized

    Dystonia-ataxia syndrome with permanent torsional nystagmus caused by ECHS1 deficiency

    Get PDF
    Biallelic mutations in ECHS1, encoding the mitochondrial enoyl-CoA hydratase, have been associated with mitochondrial encephalopathies with basal ganglia involvement. Here, we describe a novel clinical presentation consisting of dystonia-ataxia syndrome with hearing loss and a peculiar torsional nystagmus observed in two adult siblings. The presence of a 0.9-ppm peak at MR spectroscopy analysis suggested the accumulation of branched-chain amino acids. Exome sequencing in index probands identified two ECHS1 mutations, one of which was novel (p.V82L). ECHS1 protein levels and residual activities were reduced in patients' fibroblasts. This paper expands the phenotypic spectrum observed in patients with impaired valine catabolism

    po 032 displacement of hexokinase 2 from mitochondria induces mitochondrial ca2 overload and caspase independent cell death in cancer cells

    Get PDF
    Introduction Hexokinase 2 (HK2) phosphorylates glucose for starting its utilisation in glycolysis and pentose phosphate pathway. In many cancer cell types these processes are enhanced and HK2 expression is strongly induced and mainly localised to the outer mitochondrial membrane, where it also exerts an anti-apoptotic activity. Genetic ablation in mouse highlights HK2 importance in tumour formation. Therefore, HK2 is a good target for antineoplastic strategies, but HK2 inhibitors can have important side effects as they affect glucose metabolism. Here we have developed an antineoplastic strategy based on HK2 detachment from mitochondria in order to induce tumour cell death without inhibiting hexokinase enzymatic activity. Material and methods Peptide design and synthesis; hexokinase enzymatic activity assays. Measurements of mitochondrial membrane potential, intracellular Ca2+ levels, cell death and in vitro and in vivo tumorigenic assays on human and mouse cancer cell models (CT26 colon cancer cells, 4 T1 breast cancer cells, HeLa cervix carcinoma cells and primary human B-CLL cells). Results and discussions We have observed that in cancer cells HK2 locates at contact sites between mitochondria and endoplasmic reticulum called MAMs (mitochondria-associated membranes). We could selectively detach HK2 from MAMs by using a peptide that does not perturb hexokinase enzymatic activity. This treatment rapidly induces opening of the Inositol-3-Phospate-Receptor and the ensuing Ca2+ transfer from endoplasmic reticulum to mitochondria. As a consequence, a Ca2+ overload occurs in mitochondria, leading to permeability transition pore opening, mitochondrial membrane depolarization and apoptosis in a caspase-independent way. Peptide administration reduces allografic growth of breast and colon cancer cells without any noxious effect on healthy tissues, and elicits death of B-cell chronic lymphocytic leukaemia (B-CLL) cells freshly obtained by patients and in vivo. Conclusion We have reported that HK2 locates in MAMs of cancer cells, where it acts as an important player in the control of their survival. Targeting HK2 with a peptide-based strategy constitutes a novel and promising anti-neoplastic approach

    Stormorken syndrome caused by a p.R304W STIM1 mutation: The first Italian patient and a review of the literature

    Get PDF
    Stormorken syndrome is a rare autosomal dominant disease that is characterized by a complex phenotype that includes tubular aggregate myopathy (TAM), bleeding diathesis, hyposplenism, mild hypocalcemia and additional features, such as miosis and a mild intellectual disability (dyslexia). Stormorken syndrome is caused by autosomal dominant mutations in the STIM1 gene, which encodes an endoplasmic reticulum Ca2+ sensor. Here, we describe the clinical and molecular aspects of a 21-year-old Italian female with Stormorken syndrome. The STIM1 gene sequence identified a c.910C T transition in a STIM1 allele (p.R304W). The p.R304W mutation is a common mutation that is responsible for Stormorken syndrome and is hypothesized to cause a gain of function action associated with a rise in Ca2+ levels. A review of published STIM1 mutations (n = 50) and reported Stormorken patients (n = 11) indicated a genotype-phenotype correlation with mutations in a coiled coil cytoplasmic domain associated with complete Stormorken syndrome, and other pathological variants outside this region were more often linked to an incomplete phenotype. Our study describes the first Italian patient with Stormorken syndrome, contributes to the genotype/phenotype correlation and highlights the possibility of directly investigating the p.R304W mutation in the presence of a typical phenotype

    Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements.</p> <p>Methods</p> <p>We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in <it>DMD </it>gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis.</p> <p>Results</p> <p>We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients), followed by TAG (n = 7) and TAA (n = 4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the <it>DMD </it>gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65.</p> <p>Conclusion</p> <p>The analysis of our patients' sample, carrying point mutations or complex rearrangements in <it>DMD </it>gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin functional domains. These data can have a prognostic relevance and can be useful in directing new therapeutic approaches, which rely on a precise definition of the genetic defects as well as their molecular consequences.</p

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Impact of intracellular ion channels on cancer development and progression

    Get PDF
    • …
    corecore