236 research outputs found
Wrinkling in the deflation of elastic bubbles
The protein hydrophobin HFBII self-assembles into very elastic films at the surface of water; these films wrinkle readily upon compression. We demonstrate and study this wrinkling instability in the context of non-planar interfaces by forming HFBII layers at the surface of bubbles; the interfaces are then compressed by deflating the bubble. By varying the initial concentration of the hydrophobin solutions, we are able to show that buckling occurs at a critical packing fraction of protein molecules on the surface. Independent experiments show that at this packing fraction the interface has a finite positive surface tension, and not zero surface tension as is usually assumed at buckling. We attribute this non-zero wrinkling tension to the finite elasticity of these interfaces. We develop a simple geometrical model for the evolution of the wrinkle length with further deflation, and show that wrinkles start close to the needle used for deflation and grow rapidly towards the mid-plane of the bubble. This geometrical model yields predictions for the length of wrinkles in good agreement with experiments, independently of the rheological properties of the adsorbed layer
The Influence of high pressure on the bending rigidity of model membranes
Curvature is a fundamental lipid
membrane property that influences
many membrane-mediated biological processes and dynamic soft materials.
One of the key parameters that determines the energetics of curvature
change is the membrane bending rigidity. Understanding the intrinsic
effect of pressure on membrane bending is critical to understanding
the adaptation and structural behavior of biomembranes in deep-sea
organisms as well as soft material processing. However, it has not
previously been possible to measure the influence of high hydrostatic
pressure on membrane bending energetics, and this bottleneck has primarily
been due to a lack of technology platforms for performing such measurements.
We have developed a new high-pressure microscopy cell which, combined
with vesicle fluctuation analysis, has allowed us to make the first
measurements of membrane bending rigidity as a function of pressure.
Our results show a significant increase in bending rigidity at pressures
up to 40 MPa. Above 40 MPa, the membrane mechanics become more complex.
Corresponding small and wide-angle X-ray diffraction shows an increase
in density and thickness of the bilayer with increasing pressure which
correlates with the micromechanical measurements. These results are
consistent with recent theoretical predictions of the bending rigidity
as a function of hydrocarbon chain density. This technology has the
potential to transform our quantitative understanding of the role
of pressure in soft material processing, the structural behavior of
biomembranes, and the adaptation mechanisms employed by deep-sea organisms
Elastometry of deflated capsules elastic moduli from shape and wrinkle analysis
Elastic capsules, prepared from droplets or bubbles attached to a capillary (as in a pendant drop tensiometer), can be deflated by suction through the capillary. We study this deflation and show that a combined analysis of the shape and wrinkling characteristics enables us to determine the elastic properties in situ. Shape contours are analyzed and fitted using shape equations derived from nonlinear membrane-shell theory to give the elastic modulus, Poisson ratio and stress distribution of the membrane. We include wrinkles, which generically form upon deflation, within the shape analysis. Measuring the wavelength of wrinkles and using the calculated stress distribution gives the bending stiffness of the membrane. We illustrate this method on two very different capsule materials: polymerized octadecyltrichlorosilane (OTS) capsules and hydrophobin (HFBII) coated bubbles. Our results are in agreement with the available rheological data. For hydrophobin coated bubbles the method reveals an interesting nonlinear behavior consistent with the hydrophobin molecules having\ud
a rigid core surrounded by a softer shell
Photonic gaps in cholesteric elastomers under deformation
Cholesteric liquid crystal elastomers have interesting and potentially very
useful photonic properties. In an ideal monodomain configuration of these
materials, one finds a Bragg-reflection of light in a narrow wavelength range
and a particular circular polarization. This is due to the periodic structure
of the material along one dimension. In many practical cases, the cholesteric
rubber possesses a sufficient degree of quenched disorder, which makes the
selective reflection broadband. We investigate experimentally the problem of
how the transmittance of light is affected by mechanical deformation of the
elastomer, and the relation to changes in liquid crystalline structure. We
explore a series of samples which have been synthesized with photonic stop-gaps
across the visible range. This allows us to compare results with detailed
theoretical predictions regarding the evolution of stop-gaps in cholesteric
elastomers
Direct measurement of DNA-mediated adhesion between lipid bilayers
Multivalent interactions between deformable mesoscopic units are ubiquitous
in biology, where membrane macromolecules mediate the interactions between
neighbouring living cells and between cells and solid substrates. Lately,
analogous artificial materials have been synthesised by functionalising the
outer surface of compliant Brownian units, for example emulsion droplets and
lipid vesicles, with selective linkers, in particular short DNA sequences. This
development extended the range of applicability of DNA as a selective glue,
originally applied to solid nano and colloidal particles. On very deformable
lipid vesicles, the coupling between statistical effects of multivalent
interactions and mechanical deformation of the membranes gives rise to complex
emergent behaviours, as we recently contributed to demonstrate [Parolini et
al., Nature Communications, 2015, 6, 5948]. Several aspects of the complex
phenomenology observed in these systems still lack a quantitative experimental
characterisation and fundamental understanding. Here we focus on the
DNA-mediated multivalent interactions of a single liposome adhering to a flat
supported bilayer. This simplified geometry enables the estimate of the
membrane tension induced by the DNA-mediated adhesive forces acting on the
liposome. Our experimental investigation is completed by morphological
measurements and the characterisation of the DNA-melting transition, probed by
in-situ F\"{o}rster Resonant Energy Transfer spectroscopy. Experimental results
are compared with the predictions of an analytical theory that couples the
deformation of the vesicle to a full description of the statistical mechanics
of mobile linkers. With at most one fitting parameter, our theory is capable of
semi-quantitatively matching experimental data, confirming the quality of the
underlying assumptions.Comment: 16 pages, 7 figure
Real symmetric random matrices and paths counting
Exact evaluation of is here performed for real symmetric
matrices of arbitrary order , up to some integer , where the matrix
entries are independent identically distributed random variables, with an
arbitrary probability distribution.
These expectations are polynomials in the moments of the matrix entries ;
they provide useful information on the spectral density of the ensemble in the
large limit. They also are a straightforward tool to examine a variety of
rescalings of the entries in the large limit.Comment: 23 pages, 10 figures, revised pape
Compact support probability distributions in random matrix theory
We consider a generalization of the fixed and bounded trace ensembles introduced by Bronk and Rosenzweig up to an arbitrary polynomial potential. In the large-N limit we prove that the two are equivalent and that their eigenvalue distribution coincides with that of the "canonical" ensemble with measure exp[-Tr V(M)]. The mapping of the corresponding phase boundaries is illuminated in an explicit example. In the case of a Gaussian potential we are able to derive exact expressions for the one- and two-point correlator for finite , having finite support
Long-range interactions, wobbles, and phase defects in chains of model cilia
Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.Human Frontier Science Program; Wellcome Trust; EU ERC CoG Hydrosyn
Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft membranes
Short DNA linkers are increasingly being exploited for driving specific
self-assembly of Brownian objects. DNA-functionalised colloids can assemble
into ordered or amorphous materials with tailored morphology. Recently, the
same approach has been applied to compliant units, including emulsion droplets
and lipid vesicles. The liquid structure of these substrates introduces new
degrees of freedom: the tethers can diffuse and rearrange, radically changing
the physics of the interactions. Unlike droplets, vesicles are extremely
deformable and DNA-mediated adhesion causes significant shape adjustments. We
investigate experimentally the thermal response of pairs and networks of
DNA-tethered liposomes and observe two intriguing and possibly useful
collective properties: negative thermal expansion and tuneable porosity of the
liposome networks. A model providing a thorough understanding of this
unexpected phenomenon is developed, explaining the emergent properties out of
the interplay between the temperature-dependent deformability of the vesicles
and the DNA-mediated adhesive forces.Funding was provided by the Ernest Oppenheimer Fund and Emmanuel College Cambridge (L.D.M.), EPSRC Programme Grant CAPITALS number EP/J017566/1 (L.P., J.K., P.C. and L.D.M.) and the Winton Fund for Physics of Sustainability (E.E.).This article was originally published in Nature Communications (L Parolini, BM Mognetti, J Kotar, E Eiser, P Cicuta, L Di Michele, Nature Communications 2015, 6, 5948
- …