329 research outputs found

    Lorentz-covariant, unitary evolution of a relativistic Majorana qubit

    Get PDF
    We formulate a covariant description of a relativistic qubit identified with an irreducible set of quantum spin states of a Majorana particle with a sharp momentum. We treat the particle’s four-momentum as an external parameter. We show that it is possible to define an interesting time evolution of the spin density matrix of such a qubit. This evolution is manifestly Lorentz covariant in the bispinor representation and unitary in the spin representation. Moreover, during this evolution the Majorana particle undergoes an uniformly accelerated motion. We classify possible types of such motions, and finally we illustrate the behaviour of the polarization vector of the Majorana qubit during the evolution in some special cases

    Helicity correlations of vector bosons

    Full text link
    We calculate the helicity and polarization correlation functions in the Einstein-Podolsky-Rosen-type experiments with relativistic vector bosons. We show that the linear polarization correlation function in the appriopriately chosen state in the massless limit is the same as the correlation function in the scalar two-photon state. We show also that the polarization correlation function violate the Clauser-Horne-Shimony-Holt inequality and that the degree of this violation can increase with the particle momentum.Comment: 8 pages, 3 figure

    Einstein-Podolsky-Rosen correlations of Dirac particles - quantum field theory approach

    Full text link
    We calculate correlation function in the Einstein--Podolsky--Rosen type of experiment with massive relativistic Dirac particles in the framework of the quantum field theory formalism. We perform our calculations for states which are physically interesting and transforms covariantly under the full Lorentz group action, i.e. for pseudoscalar and vector state.Comment: 9 pages, 2 figures. Published versio

    PDB3 Epidemiology, Patient Burden and Related Costs of Obesity in China

    Get PDF

    Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H-SiC

    Get PDF
    Cataloged from PDF version of article.The influence of growth pressure on the coalescence thickness and the crystal quality of GaN deposited on 4H-SiC by low pressure metalorganic vapor phase epitaxy was studied. It was shown that growth pressure has an impact on the surface roughness of epilayers and their crystal quality. GaN coalescence thicknesses were determined for the investigated growth pressures. The GaN layers were characterized by AFM and HRXRD measurements. HEMT structures were also fabricated and characterized. Among the growth pressures studied, 50, 125 and 200 mbar, 200 mbar was found to be most suitable for GaN/SiC epitaxy. (C) 2010 Elsevier B.V. All rights reserved

    Unstable particles as open quantum systems

    Full text link
    We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace preserving maps forming one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence.Comment: 11 pp, 2 figs (published version

    Destruction of states in quantum mechanics

    Full text link
    A description of destruction of states on the grounds of quantum mechanics rather than quantum field theory is proposed. Several kinds of maps called supertraces are defined and used to describe the destruction procedure. The introduced algorithm can be treated as a supplement to the von Neumann-Lueders measurement. The discussed formalism may be helpful in a description of EPR type experiments and in quantum information theory.Comment: 14 pp, 1 eps figure, LaTeX2e using iopart class. Final version, will be published in J. Phys. A: Math. Ge

    Lorentz-covariant quantum mechanics and preferred frame

    Full text link
    In this paper the relativistic quantum mechanics is considered in the framework of the nonstandard synchronization scheme for clocks. Such a synchronization preserves Poincar{\'e} covariance but (at least formally) distinguishes an inertial frame. This enables to avoid the problem of a noncausal transmision of information related to breaking of the Bell's inequalities in QM. Our analysis has been focused mainly on the problem of existence of a proper position operator for massive particles. We have proved that in our framework such an operator exists for particles with arbitrary spin. It fulfills all the requirements: it is Hermitean and covariant, it has commuting components and moreover its eigenvectors (localised states) are also covariant. We have found the explicit form of the position operator and have demonstrated that in the preferred frame our operator coincides with the Newton--Wigner one. We have also defined a covariant spin operator and have constructed an invariant spin square operator. Moreover, full algebra of observables consisting of position operators, fourmomentum operators and spin operators is manifestly Poincar\'e covariant in this framework. Our results support expectations of other authors (Bell, Eberhard) that a consistent formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure
    corecore