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Abstract
Weformulate a covariant description of a relativistic qubit identifiedwith an irreducible
set of quantum spin states of aMajorana particle with a sharp momentum.We treat the
particle’s four-momentumas an external parameter.We show that it is possible to define
an interesting time evolution of the spin density matrix of such a qubit. This evolution
is manifestly Lorentz covariant in the bispinor representation and unitary in the spin
representation. Moreover, during this evolution the Majorana particle undergoes an
uniformly accelerated motion. We classify possible types of such motions, and finally
we illustrate the behaviour of the polarization vector of the Majorana qubit during the
evolution in some special cases.

Keywords Relativistic qubit · Relativistic quantum information theory ·
Lorentz-covariant evolution

CR Subject Classification Relativistic quantum information

1 Introduction

In the last two decades, the relativistic quantum information theory became an impor-
tant area of research, see, e.g. [1,2,5,7–10,12,15,19,21,23–27]. One of the difficulties
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in this theory is related to the notion of a qubit modelled on the space of states of
a massive spinning relativistic particle. The main problem lies in the fact that the
procedure leading to the reduced density matrix is not Lorentz covariant regard-
less of the Lorentz invariance of the integration measure [22] (see also [16]). This
problem stems from the fact that the Wigner rotation is momentum-dependent and
consequently wave packets with momentum spread transforms differently for each
energy/momentum mode. This problem was overcame in our previous paper [11]
where we obtained the Lorentz-covariant reduced matrix which contains not only
the information about the polarization of the particle but also the information about
average values of the kinematical degrees of freedom. However, because the aver-
ages do not keep of the physically important interrelations like dispersion relation for
four-momentum, Minkowski transversality condition between four-momentum and
relativistic pseudospin four-vector, etc., we restrict here our attention to the case of
sharp momentum treated as an external parameter. Therefore, in the present paper we
define a covariant form of a spin density matrix in the bispinor basis for a relativistic
Majorana particle with a sharp four-momentum. We choose the Majorana particle as
an elementary system since it is the simplest spin-1/2 relativistic system. (In contrast,
Dirac field admits particle and antiparticle excitations.) However, the main goal of this
paper is to propose a model of a manifestly Lorentz- covariant, unitary evolution of
a qubit. Unitarity of the evolution enables us to treat four-momentum as an external
classical parameter—in this sense, our approach is a semiclassical one. On the other
hand, the spin state of the particle undergoes an unitary evolution. This approach is
similar to that used in the description of kinematical evolution of particles in Stern–
Gerlach experiment. Therefore, an interpretation of four-momentum as an external
parameter allows to associate the classical trajectory with the motion of the Majorana
particle. We consider the class of motions for which the square of a four-acceleration
is constant during the evolution.

The proposedmodel of evolution can be useful in the discussion of spin correlations
and entanglement evolution in experiments with accelerating particles. Paper on this
subject is in preparation.

2 The setting

In this section, we introduce basic notions, definitions, and conventions used through
this paper.

2.1 Majorana field

We recall here briefly the description of Majorana spin 1/2 particles.
The Majorana field operator has the standard momentum expansion

φ̂α(x) = 1

(2π)3/2

∑

σ=±1/2

∫
d3k
2k0

[
e−ikxuασ (k)aσ (k) + eikxvασ (k)a†σ (k)

]
, (1)
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where α is a bispinor index, a†σ (k) are creation operators of the particle with four-
momentum k, massm, and spin component along the z-axis equal toσ ; moreover, k0 =√
k2 + m2. Creation and annihilation operators fulfil the canonical anticommutation

relations {
aσ ′(k), a†σ (p)

}
= 2k0δ3(k − p)δσσ ′ . (2)

The field operator, φ̂(x), fulfils the Dirac equation

(
iγ μ∂μ − mI

)
φ̂(x) = 0, (3)

where γ μ are Dirac matrices (for our convention concerning Dirac matrices, see
“Appendix A”). This equation implies the following standard conditions for ampli-
tudes:

(kγ + mI )v(k) = 0, (4a)

(kγ − mI )u(k) = 0, (4b)

where v(k) and u(k) denote matrices [vασ (k)] and [uασ (k)], respectively, and kγ =
kμγ μ. Operators v(k) and u(k) can be treated as intertwining operators between spin
basis (corresponding to indices σ ) and covariant bispinor basis (corresponding to
indices α).

For further convenience, let us introduce the standard projectors

Λ±(k) = mI ± kγ

2m
. (5)

Next, the field operator transforms under Lorentz group action in the following
way:

U (Λ)φ̂(x)U †(Λ) = S−1(Λ)φ̂(Λx), (6)

where U (Λ) is an element of the unitary irreducible representation of the Poincaré
group and S(Λ) is the bispinor representation of the Lorentz group (for the explicit
form of bispinor representation employed in this paper, see “AppendixA”, in particular
S(Λ) is given in Eq. (78)).

Creation and annihilation operators transform as follows:

U (Λ)aσ (k)U †(Λ) = W
†(Λ, k)σλaλ(Λk), (7a)

U (Λ)a†σ (k)U †(Λ) = W
T (Λ, k)σλa

†
λ(Λk), (7b)

where W(Λ, k) ∈ SL(2,C) corresponds to the Wigner rotation in a standard homo-
morphism of SL(2,C) onto a Lorentz group, compare (79).

Consistency of Eqs. (6 and 7) imply standard Weinberg conditions for amplitudes

v(Λk) = S(Λ)v(k)WT (Λ, k), (8a)

u(Λk) = S(Λ)u(k)W†(Λ, k). (8b)
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A Majorana particle is its own antiparticle; therefore, it does not change under the
action of the charge conjugation operator, i.e.

Ca†σ (k)C† = a†σ (k), (9)

where C is a charge conjugation operator.
The charge conjugation operator acting on the Majorana field gives

Cφ̂(x)C† = C ˆ̄φT (x) = φ̂(x), (10)

where we use standard notation ˆ̄φ = φ̂†γ 0 and C is the charge conjugation matrix
(75). Equation (10) implies the following condition for amplitudes:

u(k) = C v̄T (k), (11a)

v(k) = C ūT (k). (11b)

Explicit form of amplitudes depends on the chosen representation of gamma matri-
ces. We have determined v(k) in “Appendix A”; its final form is the following:

v(k) = 1√
2

(
Lk

−L
−1
k

)
σ2 = 1

2
√
1 + k0

m

( (
I + 1

m k
μσμ

)
σ2

− (
I + 1

m k
πμσμ

)
σ2

)
, (12)

where kπ = (k0,−k), and σi , i = 1, 2, 3, are the standard Pauli matrices, σ0 = I .
The explicit form of the amplitude u(k) can be found with the help of Eq. (11a)

u(k) = iγ 5v(k)σ2 = i√
2

(
Lk

L
−1
k

)
, (13)

where Lk is the matrix corresponding to the standard Lorentz boost transforming
the particle of the mass m from the rest to the state with four-momentum k (see
“Appendix A”, Eq. (80) for the details).

2.2 One-particle states

The state of a particle with momentum k and spin component σ in the spin basis is
defined as

|k, σ 〉 = a†σ (k)|0〉, (14)

where |0〉 is a Lorentz-invariant vacuum vector, 〈0|0〉 = 1, aσ (k)|0〉 = 0.
The states {|k, σ 〉} span the carrier space of the irreducible unitary representation

U (Λ) of the Poincaré group

U (Λ)|k, σ 〉 = W(Λ, k)λσ |Λk, λ〉, (15)
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whereW(Λ, k) is defined in (7). Equation (2) implies that states {|k, σ 〉} are normal-
ized covariantly

〈k, σ |k′, σ ′〉 = 2k0δ3(k − k′)δσσ ′ , (16)

where k = (k0,k). Notice that Eq. (15) is consistent with Eq. (6) due to Weinberg
conditions (8).

With the help of operators v(k), one can define states1

|α, k〉 = vασ (k)|k, σ 〉 (17)

transforming covariantly under Lorentz group action

U (Λ)|α, k〉 = S−1(Λ)αβ |β,Λk〉. (18)

Here S(Λ) is a bispinor representation of a Lorentz transformation; its explicit form is
given in Eq. (78). Therefore, (17) defines an overcomplete bispinor basis in a Hilbert
space of one-particle states. It holds

S̄(Λ) = γ 0S†(Λ)γ 0 = S−1(Λ). (19)

Using Eq. (84), we find
|k, σ 〉 = −v̄(k)σα|α, k〉, (20)

where v̄(k) = v(k)†γ0.

3 Relativistic Majorana qubit

The problem of a covariant reduced spin density matrix in a relativistic framework
was widely discussed in the literature, see, e.g. [11,16,22].

Here we restrict our attention to a particle with a definite (sharp) momentum. The
density operator describing such a particle can be written in the spin basis {|k, σ 〉} as

ρ̂(k) = ρ(k)σλ|k, σ 〉〈k, λ|. (21)

The same density operator can be written in the covariant basis {|α, k〉} as

ρ̂(k) = Ω(k)βα|α, k〉〈β, k|, (22)

(notice the reversed order of indices inΩ , we use such an order for further convenience)
where we define

〈α, k| ≡ 〈β, k|γ 0
β,α = 〈k, σ |v̄(k)σα. (23)

1 Notice our notational convention: covariant vectors (17) and standard basis vectors (14) differ by the
order of arguments.
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Taking into account Eq. (17), matrices ρ(k) = [ρ(k)σλ] and Ω(k) = [Ω(k)αβ ] can
be related via the following equation:

ρT (k) = v̄(k)Ω(k) v(k). (24)

To determine Ω(k) as a function of ρ(k), we have to take into account that vectors
|α, k〉 are not linearly independent. Therefore, to fix uniquely a matrix Ω , we demand
that

Λ−Ω(k)Λ− = Ω(k). (25)

Equations (24 and 25) give

Ω(k) = v(k) ρT (k) v̄(k). (26)

Now, applying Lorentz transformation U (Λ) to the density operator ρ̂(k) we get

U (Λ)ρ̂(k)U †(Λ) = ρ′(Λk)σλ|Λk, σ 〉〈Λk, λ| (27)

= Ω ′(Λk)βα|α,Λk〉〈β,Λk|, (28)

and using Eqs. (15 and 18) we find the following transformation rules for matrices
ρ(k) and Ω(k)

ρ′(Λk) = W(Λ, k) ρ(k)W†(Λ, k), (29)

Ω ′(Λk) = S(Λ)Ω(k) S−1(Λ). (30)

We see that, in contrast to the density matrix ρ, the matrix Ω(k) transforms in a
manifestly covariant way under Lorentz group action.

The properties of the matrix ρ(k) imply that it can be written in the standard Bloch
form

ρ(k) = 1

2
(I + ξ(k) · σ ), |ξ | ≤ 1. (31)

The correspondingmatrixΩ(k) can be determinedwith the help of Eq. (26).We obtain

Ω(k) = 1

4

⎛

⎝
−I − 2

m2 (kσ)(wπσ) 1
m

(
(kσ) − 2(wσ)

)

1
m

(
(kπσ) + 2(wπσ)

)
−I + 2

m2 (k
πσ)(wσ)

⎞

⎠ , (32)

where we introduced the Pauli–Lubanski four-vector

w0 = k · ξ

2
, w = 1

2

(
mξ + k(k · ξ)

m + k0

)
(33)

satisfying:

Lk

(
0
ξ

)
= 2

m
w, kw = 0, w2 = −1

4
m2ξ2, (34)
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Lk stands here for the standard boost defined before Eq. (80). We also use the standard
notation kπ = (k0,−k), kσ = kμσμ (and analogously wπ = (w0,−w) and wσ =
wμσμ).

In terms of gamma matrices, the density matrix Ω(k) takes the form

Ω(k) = 1

4

(
kγ

m
− I

) (
I + 2γ 5wγ

m

)
. (35)

Moreover, the relation kw = 0 implies that (kγ )(wγ ) = −(wγ )(kγ ).
Notice that the hermicity of ρ(k) implies

Ω̄(k) = Ω(k), (36)

while the property Tr ρ(k) = 1 gives

TrΩ(k) = −1. (37)

From Eq. (35), we see that the covariant matrix Ω(k), representing the density
matrix ρ in the bispinor basis, is a function of k and ξ (via the Pauli–Lubanski
four-vector). In the following, we will treat four-momentum as an external param-
eter determining a classical kinematical state of a particle. The quantum state of a
particle is determined by spin.

3.1 Spin observable

The spin operator in the spin basis is defined as

Ŝ = σ

2
. (38)

Thus, to calculate the average value of the spin observable in a state ˆρ(k) we use the
formula

〈S〉 = Tr
(
ρ(k)

σ

2

)
. (39)

Therefore, using (39,24,25) and taking into account that Λ−u(k) = 0 we find

〈S〉 = Tr

(
Ω(k)

v(k)σ T v̄(k)

2

)
= Tr

[
Ω(k)

(
v(k)σ T v̄(k)

2
+ u(k)σ T ū(k)

2

)]
.

(40)
We have included terms with u(k) to be able to apply the spin operator to negative
energy states. So, finally, in the bispinor basis the spin operator takes the following
form:

Ŝ = v(k)σ T v̄(k)

2
+ u(k)σ T ū(k)

2
. (41)
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Explicitly, we have:

Ŝ = 1

2m

[
P0

(
σ 0
0 σ

)
− iP ×

(
σ 0
0 −σ

)
− P

m + P0

(
P · σ 0
0 P · σ

)]
. (42)

It is worth noticing here that the problem of choice of a proper spin observable for
a relativistic particle has a long history, see, e.g. [4,6,14] and references therein. In
our previous papers, e.g. [13,14], we have shown that the best spin operator has the
following form:

ŜNW = 1

m

(
Ŵ − Ŵ 0 P

m + P0

)
, (43)

where

Ŵμ = −1

2
εμνμ′ν′

Pν Ĵμ′ν′ (44)

is a Pauli–Lubanski four-vector and Ĵμν are generators of the Lorentz group, in a
bispinor case

Ĵμν = i

4
[γμ, γν]. (45)

InEq. (43),weused the subscript ‘NW’because this spin operator is related toNewton–
Wigner localization (for the details see [13,14]). Using the explicit form of gamma
matrices (74), one can show that ŜNW is equal to the spin operator given in Eq. (42).
Therefore, we can write

〈S〉 = Tr
(
ŜNWΩ(k)

)
. (46)

4 Unitary, covariant evolution of a qubit

Formalism introduced in the previous section enables us to find a model of Lorentz-
covariant and unitary evolution of a Majorana qubit. To this end, let us consider the
following element of the bispinor representation of the SL(2,C) group:

K (τ ) = e−iτ F = e−iτ(ω·J+η·K), (47)

where the most general form of F reads

F = fμν

i

4

[
γ μ, γ ν

] = fi j
i

4

[
γ i , γ j

]
+ f0 j

i

4
[γ 0, γ j ] ≡ ω · J + η · K. (48)

In the above equation, we have introduced the standard notation for generators of
rotations and pure Lorentz boosts

J k = i

8
εki j

[
γ i , γ j

]
, K j = i

4
[γ 0, γ j ]. (49)
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The explicit form of J and K in the Weyl representation of gamma matrices used in
this paper is the following:

J = 1

2

(
σ 0
0 σ

)
, K = i

2

(
σ 0
0 −σ

)
. (50)

Now, we identify τ in K (τ ) (Eq. (47)) with a proper time of the particle. Trans-
formations K (τ ) form one-parameter subgroup of a bispinor representation of the
SL(2,C) group. The whole family {K (τ )} transforms in an explicitly covariant man-
ner under inner automorphisms of the SL(2,C) group. Thus, equivalent trajectories
are determined by the values of invariants corresponding to Casimir operators in the
Lie algebra of the SL(2,C) group. These invariants read:

C1 = ω2 − η2 = ω2 − η2, C2 = ω · η = ωη cos θ. (51)

In the bispinor representation, γ μ transforms like four-vector; therefore,

K (τ )qμγ μ K̄ (τ ) = pμ(τ)γ μ, qμ = pμ(0). (52)

In the following, pμ(τ)will be identified with a four-momentum of an evolvingMajo-
rana qubit.

Taking into account the form of K (τ ) and Eq. (52), one can easily show that the
Minkowski square of a four-acceleration

aμ(τ) = 1

m

dpμ(τ)

dτ
(53)

is negative and independent of a proper time τ . This means that a motion defined by
(52) is an uniformly accelerated motion. Furthermore, when we determine pμ(τ) we
can estimate a classical trajectory of a qubit using the formula

x(τ ) = 1

m

∫ τ

0
p(τ ′) dτ ′. (54)

Now, choosing variousC1 andC2 we obtain different types of motion. In particular,
we can distinguish the following special types:

1. ω = η 	= 0, ω ⊥ η (C1 = C2 = 0)
2. ω = 0 (C2 = 0, C1 < 0)
3. η = 0 (C2 = 0, C1 > 0)

Of course, in general motions with arbitrary values of C1 and C2 are possible. Anal-
ogous classification of uniformly accelerated motions was considered in [17,18,20].

Next, by means of Weinberg conditions (8) we can connect the action of one-
parametric subgroup K (τ ) ∈ SL(2,C) in bispinor basis with its action on objects in
spin basis (and vice versa). Formulas (27,28) and (8) imply that inserting A = K (τ )

we get
Ω ′(p(τ ), ξ(τ, q)) = K (τ )Ω(q, ξ(0, q))K−1(τ ), (55)
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and
ρ(ξ(τ, q)) = W(K (τ ), q)ρ(ξ(0, q))W†(K (τ ), q), (56)

where theunitarymatrixW(K (τ ), q) represents theWigner rotation L−1
K (τ )q K (τ )Lq—

compare Eq. (79). In this way explicitly covariant (but in general nonunitary)
transformation of a matrix Ω is realized as unitary transformation of a corresponding
density matrix ρ.

Using the form of Ω given in Eq. (35), we obtain

Ω(p(τ ), w(τ)) = K (τ )Ω(q, w(0))K−1(τ ), (57)

where w(0) can be determined from Eq. (33) by inserting qμ as a four-momentum
and ξ(0) as a polarization vector.

wμ(τ) is a (pseudo-)four-vector; therefore, excluding space–time inversions, it
transforms like pμ(τ). Using this observation, we can determine wμ(τ) with the help
of the following formula:

wμ(τ)γ μ = K (τ )wμ(0)γ μ K̄ (τ ). (58)

Having w(τ) and p(τ ) one can calculate ξ(τ, q) from Eq. (33). Alternatively, we can
determine a Wigner rotationW(K (τ ), q) and eventually ρ(ξ(τ, q)).

In general formulas for pμ(τ) and ξ(τ, q) for arbitrary qμ, ξ(0, q),ω and η obtained
from (52) and (58) are very long. Therefore, we will not present them here explicitly,
but instead we illustrate our considerations by characteristic examples.

First, let us consider the simplest case ω = η 	= 0, ω ⊥ η (C1 = C2 = 0). Using
this case, we will illustrate all steps that are necessary to find formulas for pμ(τ) and
ξ(τ, q). We start with four-momentum. With the help of (52), we find explicitly:

p0(τ ) = 2τ 2
[
q0ω2 + q · (η × ω)

] + 2τ(q · η) + q0, (59)

p(τ ) = 2τ 2
[
(q · η)η + (q · ω)ω − q0(η × ω) − ω2q

] + 2τ
[
q0η − (q × ω)

] + q. (60)

The trajectory can be determined from (54). We receive

x0(τ ) = 2τ 3

3m

[
q0ω2 + q · (η × ω)

] + τ 2

m
(q · η) + τ

m
q0, (61)

x(τ ) = 2τ 3

3m

[
(q · η)η+(q · ω)ω−q0(η × ω)−ω2q

]+τ 2

m

[
q0η − (q × ω)

] + τ

m
q.

(62)

Let us notice that we can interpret Eq. (61) as a relationship between a coordinate
time x0 and a proper time τ . We can invert this relation to obtain τ as a function of
coordinate time.

As a next step, we determine a four-acceleration using (53). We get

a0(τ ) = 4

m
τ
[
q0ω2 + q · (η × ω)

] + 2

m
(q · η), (63)
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a(τ ) = 4

m
τ
[
(q · η)η + (q · ω)ω − q0(η × ω) − ω2q

] + 2

m

[
q0η − (q × ω)

]
,

(64)

and

a2 = aμ(τ)aμ(τ) = 4

m2

[
ω2m2+(q ·η)2+(q ·ω)2−2q0

[
q0ω2+q ·(η×ω)

]]
. (65)

We want to obtain the evolution of a polarization vector ξ(τ ). To this end, we first
determine a Pauli–Lubanski four-vector as a function of τ . Using (58), we obtain

w0(τ ) = τ 2
[
ω2(q · ζ ) + m ζ · (η × ω) + κ q · (η × ω)

]

+ τ
[
m(η · ζ ) + κ(q · η)

] + q · ζ

2
, (66)

w(τ ) = τ 2
[
κ
[
(q · η)η + (q · ω)ω − ω2q

] + m
[
(η · ζ )η + (ω · ζ )ω − ω2ζ

]

− (q · ζ )(η × ω)
]

+ τ
[
(q · ζ )η + m(ω × ζ ) − κ(q × ω)

] + 1

2

(
mζ + κq

)
, (67)

where for notational simplicity we have denoted ζ = ξ(0, q) and κ = q·ζ
m+q0

.
Finally, ξ(τ, q) can be obtained from (33) via the relation

ξ(τ ) = 2

m

(
w(τ ) − w0(τ )

m + p0(τ )
p(τ )

)
. (68)

After tedious calculation, we have

ξ(τ, q) = ζ + 2τ A + 2τ 2B + 4τ 3C + 4τ 4D

m + q0 + 2τ(q · η) + 2τ 2
[
q0ω2 + q · (η × ω)

] , (69)

where

A = (q · ζ )η − (η · ζ )q + (m + q0)(ω × ζ ), (70)

B = κ
[
2(q · η)η − ω2q

] − (m + q0)ω2ζ + (m + q0)(ω · ζ )ω + (m − q0)(η · ζ )η

− ζ · (η × ω)q + 2(η · ζ )(q × ω) + 2(q · η)(ω × ζ ) − (q · ζ )(η × ω), (71)

C = κ
[
q · (η × ω)η + ω2(q × ω) − (q · η)(η × ω)

] + (
ζ · (η × ω)

)
(q × ω)

+ [
(q · η)(ω · ζ ) − (q · ω)(η · ζ )

]
ω + [

q0ω2 + q · (η × ω)
]
(ω × ζ )

− q0
(
ζ · (η × ω)

)
η + q0(η · ζ )(η × ω) + ω2(η · ζ )q − ω2(q · η)ζ , (72)

123



262 Page 12 of 19 J. Rembieliński et al.

D = κ
[
ω4q − ω2(q · η)η − ω2(q · ω)ω − (

q · (η × ω)
)
(η × ω)

]

+ [
q0ω2(ω · ζ ) + (ω · ζ )

(
q · (η × ω)

) − (q · ω)
(
ζ · (η × ω)

)]
ω

+ [
q0ω2(η · ζ ) + (η · ζ )

(
q · (η × ω)

) − (q · η)
(
ζ · (η × ω)

)]
η

+ q0
(
ζ · (η × ω)

)
(η × ω) − ω2[q0ω2 + q · (η × ω)

]
ζ + ω2(ζ · (η × ω)

)
q
(73)

In Fig. 1, we have depicted p(τ ), x(τ ) and ξ(τ ) for chosen initial conditions. For
plots we assume, without loss of generality, that m = 1 and the initial momentum
is directed along z-axis, qμ = (

√
1 + q2, 0, 0, q). Again, without loss of generality

we take ω in x–z plane, ω = ω(cosα, 0, sin α) and η as an arbitrary vector such
that |η| = |ω|, η ⊥ ω. As an initial polarization vector we take an arbitrary unit
vector, ξ = (cosφ sinΩ, sin φ sinΩ, cosΩ). In Fig. 1a we present the evolution of
momentum p(τ ), in Fig. 1b a classical trajectory of a qubit x(τ ) and in Fig. 1c an
evolution of a polarization vector ξ(τ, q) for τ ∈ 〈0, τmax〉. In all three plots, we
use the same initial conditions. Points in plots 1a, b correspond to proper times: 0,
1
3τmax, 2

3τmax. In plot 1c we have depicted the trajectory of a polarization vector ξ

on a sphere |ξ | =const (notice that unitary evolution (56) preserves the length of a
polarization vector, |ξ(τ, q)|=const). Arrows correspond to ξ(0), ξ( 13τmax), ξ( 23τmax),
and to the limit ξ(τ → ∞). Notice that the end of the polarization vector describes a
fragment of a circle on the Bloch sphere. It is a general feature of the considered case
|ω| = |η| 	= 0, ω ⊥ η.

As we have seen, general formulas for xμ(τ), pμ(τ), wμ(τ), ξ(τ ) are rather long
even in the simplest case |ω| = |η| 	= 0, ω ⊥ η. In all other cases, the corresponding
formulas are much longer. Therefore, we do not present them here explicitly but rather
describe general features of each of the cases.

In the case of the hyperbolic motion (ω = 0, η 	= 0), the trajectory of a particle
is situated in a plane determined by the initial momentum q and the vector η. Let us
stress that in this case it is possible to arrange initial conditions in such a way that
the quantum spin state does not change during the evolution. It holds when the initial
momentum q is parallel to the vector η.

In the case of the circular motion (ω 	= 0, η = 0), the trajectory in general is a helix,
except the special case q ⊥ ω when the trajectory is a circle. The end of the Bloch
vector moves on a circle on a Bloch sphere. Notice that when the initial momentum
q = 0 the particle stays at rest but the polarization vector rotates.

The most complicated behaviour we have in a general situation C1 	= 0, C2 	= 0.
Therefore, as a next examplewe consider the caseω||η belonging to this class. InFigs. 2
and 3, we have depicted p(τ ), x(τ ) and ξ(τ ) for chosen initial conditions. For plots, we
assume as in the previous case that m = 1 and the initial momentum is directed along
z-axis, qμ = (

√
1 + q2, 0, 0, q). Again, without loss of generality we take ω in x–z

plane,ω = ω(cosα, 0, sin α). Now, for simplicity we assume that η is parallel toω but
has different magnitude, i.e. η = η(cosα, 0, sin α). As an initial polarization vector,
we take an arbitrary unit vector, ξ = (cosφ sinΩ, sin φ sinΩ, cosΩ). In Figs. 2a and
3a we have depicted the evolution of momentum p(τ ), in Figs. 2b and 3b classical
trajectory of a qubit x(τ ) and in Figs. 2c and 3c evolution of a polarization vector
ξ(τ, q) for τ ∈ 〈0, τmax〉. Like in Fig. 1, in all three plots we use the same initial
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Fig. 1 Evolution in the case ω = η 	= 0, ω ⊥ η. We assume that m = 1, |ξ | = 1 and
qμ = (

√
1 + q2, 0, 0, q), ω = ω(cosα, 0, sin α), η = ω(sin α sin β, cosβ, − cosα sin β), ξ(0, q) =

(cosφ sinΩ, sin φ sinΩ, cosΩ). In a we present the evolution of the momentum p(τ ), in b we present
the classical trajectory x(τ ) and in c we present the evolution of the polarization vector ξ(τ ). All plots are
drawn for the following initial conditions: q = 3, ω = 0.4, α = π/8, β = π/4, φ = π/8, Ω = π . All
of the plots are drawn for the proper time τ ∈ 〈0, τmax = 9.6〉. Points and arrows correspond to τ = 0,
τ = τmax/3, τ = 2τmax/3. The fourth arrow in the plot (c) corresponds to the limit ξ(τ → ∞)
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Fig. 2 Evolution in the case ω||η. We assume that m = 1, |ξ | = 1 and qμ = (
√
1 + q2, 0, 0, q), ω =

ω(cosα, 0, sin α), η = η(cosα, 0, sin α), ξ(0, q) = (cosφ sinΩ, sin φ sinΩ, cosΩ). In a we present the
evolution of the momentum p(τ ), in b we present the classical trajectory x(τ ) and in c we present the
evolution of the polarization vector ξ(τ ). All plots are drawn for the following initial conditions: q = 1,
ω = 0.7, η = 0.1 α = 3π/8, φ = π/10, Ω = 10π/9. All of the plots are drawn for the proper time
τ ∈ 〈0, τmax = 9.6〉. Points and arrows correspond to τ = 0, τ = τmax/3, τ = 2τmax/3
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Fig. 3 Evolution in the caseω||η. As in Fig. 2, we assume thatm = 1, |ξ | = 1 and qμ = (
√
1 + q2, 0, 0, q),

ω = ω(cosα, 0, sin α), η = η(cosα, 0, sin α), ξ(0, q) = (cosφ sinΩ, sin φ sinΩ, cosΩ). In Fig. 2a we
present the evolution of the momentum p(τ ), in Fig. 2b we present the classical trajectory x(τ ) and in
Fig. 2c we present the evolution of the polarization vector ξ(τ ). All plots are drawn for the following initial
conditions: q = −3, ω = 2, η = 0.1 α = π/4, φ = π/18, Ω = π/6. All of the plots are drawn for the
proper time τ ∈ 〈0, τmax = 9.6〉. Points and arrows correspond to τ = 0, τ = τmax/3, τ = 2τmax/3
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conditions. Points in plots 2a, b 3a, b correspond to proper times: 0, 1
3τmax, 2

3τmax. In
plots 2c and 3c, we have depicted the trajectory of a polarization vector ξ on a sphere
|ξ | =const (as in the previous example, unitary evolution (56) preserves the length of a
polarization vector, |ξ(τ, q)|=const). Arrows correspond to ξ(0), ξ( 13τmax), ξ( 23τmax).
We see that in this case the end of the polarization vector describes quite a complicated
curve on the Bloch sphere. The trajectory of the Majorana particle is a composition
of a circular and hyperbolic motion; its detailed shape depends on initial condition.

5 Conclusions

We have defined a relativistic spin density matrix for a Majorana qubit, using
ideas developed in [11] where a covariant description is formulated within the
four-dimensional (bispinor) formalism. We have also discussed an appropriate rep-
resentation of a spin observable in a covariant basis.

Next, we have developed a model of a time evolution of the density matrix. This
evolution is manifestly Lorentz covariant in the bispinor basis while unitary in the spin
basis. Treating four-momentum as an external classical parameter, we can determine
the classical trajectory of a particle. Such an approach allows us to treat a Majorana
particle classically with respect to the evolution of the kinematical parameters, while
quantumwith respect to the evolution of the spin.We have shown that in our model the
motionon a classical trajectory is anuniformly acceleratedmotion (the square of a four-
acceleration is constant), we have also distinguished different types of these motions
(see also [17,18,20]). In the simplest case, we have derived explicit formulas for
pμ(τ), aμ(τ), xμ(τ), wμ(τ), and ξ(τ ). The obtained formulas are quite complicated
even in this case. Therefore, the second, more general, example we have treated only
numerically. We have depicted the behaviour of p(τ ), x(τ ), and ξ(τ ) in a number of
plots. As an evolution parameter, we have taken the proper time τ , but one can instead
use a coordinate time—compare the discussion after (62).

We hope that the proposed model of evolution will be useful in the discussion of
correlation experiments with accelerated particles.
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A Conventions

Dirac matrices fulfil the relation γ μγ ν + γ νγ μ = 2gμν , where we choose the
Minkowski metric tensor gμν = diag(1,−1,−1,−1); we also take ε0123 = 1. The
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following explicit representation of gamma matrices is used throughout the paper:

γ 0 =
(
0 I
I 0

)
, γ =

(
0 −σ

σ 0

)
, γ 5 =

(
I 0
0 −I

)
, (74)

where σ = (σ1, σ2, σ3) and σi are standard Pauli matrices.
The charge conjugation matrix has the form

C = −iγ 2γ 0 = i
(

σ2 0
0 −σ2

)
, (75)

so
C γ μ TC−1 = −γ μ, (76)

and
CC † = I . (77)

The bispinor representation of the Lorentz group is the representation D( 12 ,0) ⊕
D(0, 12 ). Explicitly, if A ∈ SL(2,C) and Λ(A) is an image of A in the canonical
homomorphism of the SL(2,C) group onto the Lorentz group, we take

S(Λ(A)) =
(
A 0
0 (A†)−1

)
(78)

(so-calledWeyl or chiral formof the bispinor representation). The canonical homomor-
phism between the group SL(2,C) (universal covering of the proper orthochronous
Lorentz group L↑

+) and the Lorentz group L↑
+ ∼ SO(1, 3)0 is defined as follows

[3]: With every four-vector kμ we associate a two-dimensional Hermitian matrix
kμσμ, where σ0 = I and σi , i = 1, 2, 3, are the standard Pauli matrices. In the
space of two-dimensional Hermitian matrices, the Lorentz group action is given by
k′μσμ = A(kμσμ)A†, where A denotes the element of the SL(2,C) group correspond-
ing to the Lorentz transformation Λ(A) which converts the four-vector k to k′ (i.e.
k′μ = Λ

μ
νkν).

In our paper,we use blackboard bold typeface style to denotematrices from SL(2,C)

group corresponding to theLorentz transformations. In particular, we use the following
transformations

– W(Λ, k) corresponding to the Wigner rotation

R(Λ, k) = L−1
ΛkΛLk, (79)

where Lk denotes the standard Lorentz boost defined by the relations Lkk̃ =
k, Lk̃ = I , k̃ = (m, 0). In fact, W(Λ, k) coincides with the matrix spin 1/2
representation of the R(Λ, k) ∈ SO(3), W(Λ, k) = D1/2(R(Λ, k)).
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– Lk corresponding to the standard Lorentz boost defined by the relations Lkk̃ = k,
Lk̃ = I , k̃ = (m, 0). Explicitly

Lk = 1√
2(1 + k0

m )

(
I + kμσμ

m

)
. (80)

Moreover,
L

−1
k = Lkπ , kπμ = (k0,−k). (81)

To determine amplitudes v(k) and u(k), we use the Weinberg conditions (8). The
most general form of v(k) fulfilling (8) reads

v(k) =
(
c1Lk

c2L
−1
k

)
, c1, c2 ∈ C, (82)

where Lk is given in (80). Now, the Dirac equation (4a) implies that

c2 = −c1. (83)

Further restrictions on c1 come from the normalization condition. Requiring that
v(k)v̄(k) = −Λ− (the standard projector defined in (5)), we obtain c1 = χ√

2
with

|χ | = 1. Under this choice, also relation (84) holds. Since the phase factor χ is
irrelevant, we set for convenience χ = 1. In this way, we arrive at formula (12).

Here we gathered some useful relations for the amplitudes v(k) and u(k):

v̄(k)v(k) = −I2, (84)

v(k)v̄(k) = kγ − mI

2m
= −Λ−, (85)

ū(k)u(k) = I2, (86)

u(k)ū(k) = kγ + mI

2m
= Λ+. (87)
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