4,799 research outputs found
Assessing evaluation education in African tertiary education institutions: Opportunities and reflections
The demand for knowledge from evaluations to inform evidence-based policy making continues to rise in Africa. Simultaneously, there is increased recognition of the role tertiary education institutions can play in strengthening evaluation practice through high quality evaluation education. Within this context, this paper explores the status quo of evaluation education in selected tertiary institutions in Anglophone African countries. The paper utilizes a mixed methods research methodology that blends secondary data review, an online survey using a structured questionnaire and two regional workshops. Data was collected from 12 Anglophone African tertiary education institutions. Findings indicate that evaluation education in Anglophone African tertiary institutions is mostly in the nascent stages and there are mixed feelings on the appropriate entry levels (undergraduate or postgraduate). The study highlights the need for developing a specialized evaluation curriculum as evaluation education still borrows from theories and methodologies from the North. Institutional, operational and policy-related challenges are highlighted as well as the potential for collaboration among various stakeholders in strengthening the design and implementation of evaluation education. Key tenets for strengthening evaluation education are highlighted and discussed
Thermodynamic and dynamic anomalies for a three dimensional isotropic core-softened potential
Using molecular dynamics simulations and integral equations (Rogers-Young,
Percus-Yevick and hypernetted chain closures) we investigate the thermodynamic
of particles interacting with continuous core-softened intermolecular
potential. Dynamic properties are also analyzed by the simulations. We show
that, for a chosen shape of the potential, the density, at constant pressure,
has a maximum for a certain temperature. The line of temperatures of maximum
density (TMD) was determined in the pressure-temperature phase diagram.
Similarly the diffusion constant at a constant temperature, , has a maximum
at a density and a minimum at a density .
In the pressure-temperature phase-diagram the line of extrema in diffusivity is
outside of TMD line. Although in this interparticle potential lacks
directionality, this is the same behavior observed in SPC/E water.Comment: 16 page
New way to achieve chaotic synchronization in spatially extended systems
We study the spatio-temporal behavior of simple coupled map lattices with
periodic boundary conditions. The local dynamics is governed by two maps,
namely, the sine circle map and the logistic map respectively. It is found that
even though the spatial behavior is irregular for the regularly coupled
(nearest neighbor coupling) system, the spatially synchronized (chaotic
synchronization) as well as periodic solution may be obtained by the
introduction of three long range couplings at the cost of three nearest
neighbor couplings.Comment: 5 pages (revtex), 7 figures (eps, included
Pattern Formation on Trees
Networks having the geometry and the connectivity of trees are considered as
the spatial support of spatiotemporal dynamical processes. A tree is
characterized by two parameters: its ramification and its depth. The local
dynamics at the nodes of a tree is described by a nonlinear map, given rise to
a coupled map lattice system. The coupling is expressed by a matrix whose
eigenvectors constitute a basis on which spatial patterns on trees can be
expressed by linear combination. The spectrum of eigenvalues of the coupling
matrix exhibit a nonuniform distribution which manifest itself in the
bifurcation structure of the spatially synchronized modes. These models may
describe reaction-diffusion processes and several other phenomena occurring on
heterogeneous media with hierarchical structure.Comment: Submitted to Phys. Rev. E, 15 pages, 9 fig
Density anomaly in a competing interactions lattice gas model
We study a very simple model of a short-range attraction and an outer shell
repulsion as a test system for demixing phase transition and density anomaly.
The phase-diagram is obtained by applying mean field analysis and Monte Carlo
simulations to a two dimensional lattice gas with nearest-neighbors attraction
and next-nearest-neighbors repulsion (the outer shell). Two liquid phases and
density anomaly are found.
The coexistence line between these two liquid phases meets a critical line
between the fluid and the low density liquid at a tricritical point. The line
of maximum density emerges in the vicinity of the tricritical point, close to
the demixing transition
Rights Myopia in Child Welfare
For decades, legal scholars have debated the proper balance of parents\u27 rights and children\u27s rights in the child welfare system. This Article argues that the debate mistakenly privileges rights. Neither parents\u27 rights nor children\u27s rights serve families well because, as implemented, a solely rights-based model of child welfare does not protect the interests of parents or children. Additionally, even if well-implemented, the model still would not serve parents or children because it obscures the important role of poverty in child abuse and neglect and fosters conflict rather than collaboration between the state and families. In lieu of a solely rights-based model, this Article proposes a problem-solving model for child welfare and explores one embodiment of such a model, family group conferencing. This Article concludes that a problem-solving model holds significant potential to address many of the profound theoretical and practical shortcomings of the current child welfare system
Ultraviolet Signposts of Resonant Dynamics in the Starburst-Ringed Sab Galaxy, M94 (NGC 4736)
M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging
Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m
telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along
with spectra from the International Ultraviolet Explorer and Lick 1-m
telescopes. The wide-field UIT image shows FUV emission from (a) an elongated
nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c)
a bright inner ring of H II regions at the perimeter of the inner disk (R = 48
arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the
ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc).
The HST/FOC image resolves the NUV emission from the nuclear region into a
bright core and a faint 20 arcsec. long ``mini-bar'' at a position angle of 30
deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk
indicates an approximately 10^7 or 10^8 yr-old stellar population from
low-level starbirth activity blended with some LINER activity. Analysis of the
H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers
of stars and gas in M94 indicates that most of the star formation is being
orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring,
oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at
intermediate radius, in particular, argue for bar-mediated resonances as the
primary drivers of evolution in M94 at the present epoch. Similar processes may
be governing the evolution of the ``core-dominated'' galaxies that have been
observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy''
(0024+1654) at a redshift of approximately 1.5 provides an important precedent
in this regard.Comment: revised figure 1 (corrected coordinate labels on declination axis);
19 pages of text + 19 figures (jpg files); accepted for publication in A
Semiclassical States in Quantum Cosmology: Bianchi I Coherent States
We study coherent states for Bianchi type I cosmological models, as examples
of semiclassical states for time-reparametrization invariant systems. This
simple model allows us to study explicitly the relationship between exact
semiclassical states in the kinematical Hilbert space and corresponding ones in
the physical Hilbert space, which we construct here using the group averaging
technique. We find that it is possible to construct good semiclassical physical
states by such a procedure in this model; we also discuss the sense in which
the original kinematical states may be a good approximation to the physical
ones, and the situations in which this is the case. In addition, these models
can be deparametrized in a natural way, and we study the effect of time
evolution on an "intrinsic" coherent state in the reduced phase space, in order
to estimate the time for this state to spread significantly.Comment: 21 pages, 1 figure; Version to be published in CQG; The discussion
has been slightly reorganized, two references added, and some typos correcte
The ATLAS Data Quality Defect Database System
The ATLAS experiment at the Large Hadron Collider has implemented a new
system for recording information on detector status and data quality, and for
transmitting this information to users performing physics analysis. This system
revolves around the concept of "defects," which are well-defined, fine-grained,
unambiguous occurrences affecting the quality of recorded data. The motivation,
implementation, and operation of this system is described.Comment: 6 pages, 3 figures, published in EPJ C. (v2: as published
- …