927 research outputs found

    Gas Kinematics and Excitation in the Filamentary IRDC G035.39-00.33

    Full text link
    Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at the early stages of their evolution is essential to establish the dynamical imprints of such collisions, and to infer the processes involved in their formation. We present multi-transition 13CO and C18O maps toward the IRDC G035.39-00.33, believed to be at the earliest stages of evolution. The 13CO and C18O gas is distributed in three filaments (Filaments 1, 2 and 3), where the most massive cores are preferentially found at the intersecting regions between them. The filaments have a similar kinematic structure with smooth velocity gradients of ~0.4-0.8 km s-1 pc-1. Several scenarios are proposed to explain these gradients, including cloud rotation, gas accretion along the filaments, global gravitational collapse, and unresolved sub-filament structures. These results are complemented by HCO+, HNC, H13CO+ and HN13C single-pointing data to search for gas infall signatures. The 13CO and C18O gas motions are supersonic across G035.39-00.33, with the emission showing broader linewidths toward the edges of the IRDC. This could be due to energy dissipation at the densest regions in the cloud. The average H2 densities are ~5000-7000 cm-3, with Filaments 2 and 3 being denser and more massive than Filament 1. The C18O data unveils three regions with high CO depletion factors (f_D~5-12), similar to those found in massive starless cores.Comment: 20 pages, 14 figures, 6 tables, accepted for publication in MNRA

    Meshfree finite differences for vector Poisson and pressure Poisson equations with electric boundary conditions

    Full text link
    We demonstrate how meshfree finite difference methods can be applied to solve vector Poisson problems with electric boundary conditions. In these, the tangential velocity and the incompressibility of the vector field are prescribed at the boundary. Even on irregular domains with only convex corners, canonical nodal-based finite elements may converge to the wrong solution due to a version of the Babuska paradox. In turn, straightforward meshfree finite differences converge to the true solution, and even high-order accuracy can be achieved in a simple fashion. The methodology is then extended to a specific pressure Poisson equation reformulation of the Navier-Stokes equations that possesses the same type of boundary conditions. The resulting numerical approach is second order accurate and allows for a simple switching between an explicit and implicit treatment of the viscosity terms.Comment: 19 pages, 7 figure

    The three-dimensional structure of Galactic molecular cloud complexes out to 2.5 kpc

    Full text link
    Knowledge of the three-dimensional structure of Galactic molecular clouds is important for understanding how clouds are affected by processes such as turbulence and magnetic fields and how this structure effects star formation within them. Great progress has been made in this field with the arrival of the Gaia mission, which provides accurate distances to 109\sim10^{9} stars. Combining these distances with extinctions inferred from optical-IR, we recover the three-dimensional structure of 16 Galactic molecular cloud complexes at 1\sim1pc resolution using our novel three-dimensional dust mapping algorithm \texttt{Dustribution}. Using \texttt{astrodendro} we derive a catalogue of physical parameters for each complex. We recover structures with aspect ratios between 1 and 11, i.e.\ everything from near-spherical to very elongated shapes. We find a large variation in cloud environments that is not apparent when studying them in two-dimensions. For example, the nearby California and Orion A clouds look similar on-sky, but we find California to be more sheet-like, and massive, which could explain their different star-formation rates. In Carina, our most distant complex, we observe evidence for dust sputtering, which explains its measured low dust mass. By calculating the total mass of these individual clouds, we demonstrate that it is necessary to define cloud boundaries in three-dimensions in order to obtain an accurate mass; simply integrating the extinction overestimates masses. We find that Larson's relationship on mass vs radius holds true whether you assume a spherical shape for the cloud or take their true extents.Comment: accepted for publication by MNRAS, 23 pages, 9 figures, 3 table

    Deuterium Fractionation across the Infrared Dark Cloud G034.77-00.55 interacting with the Supernova Remnant W44

    Get PDF
    Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. To test this scenario, we measure the deuteration of N2H+N_2H^+, DfracN2H+D_{frac}^{N_2H^+}, a well-studied tracer of pre-stellar cores, across the Infrared Dark Cloud (IRDC) G034.77-00.55, known to be experiencing a shock interaction with the SNR W44. We use N2_2H+^+ and N2_2D+^+ J=1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DfracN2H+D_{frac}^{N_2H^+} toward five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump and ambient gas. We find DfracN2H+D_{frac}^{N_2H^+} in the range 0.03-0.1, several orders of magnitude larger than the cosmic D/H ratio (\sim105^{-5}). Across the shock front, DfracN2H+D_{frac}^{N_2H^+} is enhanced by more than a factor of 2 (DfracN2H+D_{frac}^{N_2H^+}\sim0.05-0.07) with respect to the ambient gas (\leq0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DfracN2H+D_{frac}^{N_2H^+}}\sim0.1. We find enhanced deuteration of N2H+N_2H^+ across the region of the shock, at a level that is enhanced with respect to regions of unperturbed gas. It is possible that this has been induced by shock compression, which would then be indirect evidence that the shock is triggering conditions for future star formation. However, since unperturbed dense regions also show elevated levels of deuteration, further, higher-resolution studies are needed to better understand the structure and kinematics of the deuterated material in the shock region, e.g., if it still in relatively diffuse form or already organised in a population of low-mass pre-stellar cores.Comment: Accepted for publication on A&A; 8 pages, 5 figure

    13C dynamic nuclear polarization in diamond via a microwave-free 'integrated' cross effect

    Full text link
    Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anti-crossing condition - where the P1 Zeeman splitting matches one of the NV spin transitions - we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal

    ALMA uncovers highly filamentary structure towards the Sgr E region

    Full text link
    We report on the discovery of linear filaments observed in CO(1-0) emission for a 2\sim2' field of view toward the Sgr E star forming region centered at (l,b)=(358.720^\circ, 0.011^\circ). The Sgr E region is thought to be at the turbulent intersection of the ''far dust lane'' associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations which are generally thought to inhibit star formation, yet Sgr E contains a large number of HII regions. We present 12^{12}CO(1-0), 13^{13}CO(1-0), and C18^{18}O(1-0) spectral line observations from ALMA and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHM) of 0.1\sim0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of 2\sim2^\circ. The filaments are elongated, with lower limit aspect ratios of \sim5:1. For both filaments we detect two distinct velocity components that are separated by about 15 km s1^{-1}. In the C18^{18}O spectral line data with \sim0.09 pc spatial resolution, we find that these velocity components have relatively narrow (\sim1-2 km s1^{-1}) FWHM linewidths when compared to other sources towards the Galactic center. The properties of these filaments suggest that the gas in the Sgr E complex is being ''stretched'' as it is rapidly accelerated by the gravitational field of the Galactic bar while falling towards the CMZ, a result that could provide insight into the extreme environment surrounding this region and the large-scale processes which fuel this environment.Comment: 20 pages, 17 figures, accepted for publication in Ap

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103

    Widespread deuteration across the IRDC G035.39-00.33

    Get PDF
    © 2016 The Authors. Infrared Dark Clouds (IRDCs) are cold, dense regions that are usually found within Giant Molecular Clouds. Ongoing star formation within IRDCs is typically still deeply embedded within the surrounding molecular gas. Characterizing the properties of relatively quiescent IRDCs may therefore help us to understand the earliest phases of the star formation process. Studies of local molecular clouds have revealed that deuterated species are enhanced in the earliest phases of star formation. In this paper, we test this towards IRDC G035.39-00.33. We present an 80 arcsec by 140 arcsec map of the J = 2 → 1 transition of N2D+, obtained with the Institut de Radioastronomie Millimétrique 30 m telescope telescope. We find that N2D+ is widespread throughout G035.39-00.33. Complementary observations of N2H+ (1 - 0) are used to estimate the deuterium fraction, DN2H+ frac ≡ N(N2D+)/N(N2H+). We report a mean DN2H+ frac = 0.04 ± 0.01, with a maximum of DN2H+ frac = 0.09 ± 0.02. The mean deuterium fraction is ~3 orders of magnitude greater than the interstellar [D]/[H] ratio. High angular resolution observations are required to exclude beam dilution effects of compact deuterated cores. Using chemical modelling, we find that the average observed values of DN2H+ frac are in agreement with an equilibrium deuterium fraction, given the general properties of the cloud. This implies that the IRDC is at least ~3 Myr old, which is ~8 times longer than the mean free-fall time of the observed deuterated region
    corecore