93 research outputs found

    Doppler assessment of pulmonary artery flow patterns and ventricular function after the Fontan operation

    Full text link
    To assess the relation between ventricular systolic and diastolic function and pulmonary artery (PA) flow patterns after the Fontan operation, 15 postoperative patients were prospectively evaluated with echocardiography. Blood flow velocities in the PA were recorded with pulsed Doppler echocardiography. Ejection fraction was measured by 2-dimensional echocardiography using Simpson's rule. Indexes of diastolic function were measured from the systemic atrioventricular valve inflow Doppler and included peak E and A velocities, peak filling rate normalized for stroke volume, the fractions of filling in early and late diastole (E and A area fractions), and the E/A velocity and area ratios. Compared with 15 age-matched control subjects, the 15 patients who had undergone the Fontan procedure had decreased peak E velocity (0.65 +/- 0.20 vs 0.87 +/- 0.10 m/s), decreased E/A velocity ratio (1.29 +/- 0.23 vs 1.98 +/- 0.46), decreased normalized peak filling rate (6.09 +/- 0.90 vs 6.81 +/- 0.83 s-1), decreased E area fraction (0.63 +/- 0.09 vs 0.72 +/- 0.07), increased A area fraction (0.37 +/- 0.07 vs 0.24 +/- 0.06), and decreased E/A area ratio (1.77 +/- 0.45 vs 3.33 +/- 1.15) (p < 0.05). These diastolic filling abnormalities are consistent with impaired ventricular relaxation and decreased early diastolic transvalvular pressure gradient. PA Doppler recordings showed 2 distinct patterns of flow. Pattern I, observed in 9 patients, showed biphasic forward flow with peak velocities in mid to late systole and middiastole. Pattern II, observed in the remaining 6 patients, showed decreased systolic forward flow, a late systolic to early diastolic flow reversal, and delayed onset of diastolic forward flow. Compared with pattern I patients, pattern II patients had no significant differences in any of the Doppler indexes of diastolic function; however, pattern II patients had a significantly tower ejection fraction (43 +/- 9 vs 57 +/- 5%). Thus, many patients undergoing the Fontan procedure have impaired ventricular relaxation, but, in the presence of a normal ejection fraction, biphasic forward PA flow is maintained. With the development of decreased ejection fraction, atrial systolic filling pressures are likely increased, the ventricular suction effect is decreased, and PA flow is diminished or absent in systole and early diastole.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29071/1/0000106.pd

    Visualization of the intracavitary blood flow in systemic ventricles of Fontan patients by contrast echocardiography using particle image velocimetry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow patterns in univentricular hearts may have clinical value. Therefore, it is our objective to asses and characterize vortex flow patterns with Fontan circulation in comparison with healthy controls.</p> <p>Methods</p> <p>Twenty-three patients (8 Fontan and 15 normal patients) underwent echocardiography with intravenous contrast agent (Sonovue<sup>®</sup>) administration. Dedicated software was used to perform particle image velocimetry (PIV) and to visualize intracavitary flow in the systemic ventricles of the patients. Vortex parameters including vortex depth, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also measured.</p> <p>Results</p> <p>The data from this study show that it is feasible to perform particle velocimetry in Fontan patients. Vortex length (VL) was significantly lower (0.51 ± 0.09 vs 0.65 ± 0.12, <it>P </it>= 0.010) and vortex width (VW) (0.32 ± 0.06 vs 0.27 ± 0.04, <it>p </it>= 0.014), vortex pulsation correlation (VPC) (0.26 ± 0.25 vs -0.22 ± 0.87, <it>p </it>= 0.05) were significantly higher in Fontan patients. Sphericity index (SI) (1.66 ± 0.48 vs 2.42 ± 0.62, <it>p </it>= 0.005), relative strength (RS) (0.77 ± 0.33 vs 1.90 ± 0.47, <it>p </it>= 0.0001), vortex relative strength (VRS) (0.18 ± 0.13 vs 0.43 ± 0.14, <it>p </it>= 0.0001) were significantly lower in the Fontan patients group.</p> <p>Conclusions</p> <p>PIV using contrast echocardiography is feasible in Fontan patients. Fontan patients had aberrant flow patterns as compared to normal hearts in terms of position, shape and sphericity of the main vortices. The vortex from the Fontan group was consistently shorter, wider and rounder than in controls. Whether vortex characteristics are related with clinical outcome is subject to further investigation.</p

    Design and Rationale of the Fontan Udenafil Exercise Longitudinal (FUEL) Trial

    Get PDF
    The Fontan operation creates a circulation characterized by elevated central venous pressure and low cardiac output. Over time, these characteristics result in a predictable and persistent decline in exercise performance that is associated with an increase in morbidity and mortality. A medical therapy that targets the abnormalities of the Fontan circulation might, therefore, be associated with improved outcomes. Udenafil, a phosphodiesterase type 5 inhibitor, has undergone phase I/II testing in adolescents who have had the Fontan operation and has been shown to be safe and well tolerated in the short-term. However, there are no data regarding the long-term efficacy of udenafil in this population. The Fontan Udenafil Exercise Longitudinal (FUEL) Trial is a randomized, double blind, placebo controlled phase III clinical trial being conducted by the Pediatric Heart Network in collaboration with Mezzion Pharma Co., Ltd. This trial is designed to test the hypothesis that treatment with udenafil will lead to an improvement in exercise capacity in adolescents who have undergone the Fontan operation. A safety extension trial, the FUEL Open-Label Extension Trial (FUEL OLE), offers the opportunity for all FUEL subjects to obtain open-label udenafil for an additional 12 months following completion of FUEL, and evaluates the long-term safety and tolerability of this medication. This manuscript describes the rationale and study design for FUEL and FUEL OLE. Together, these trials provide an opportunity to better understand the role of medical management in the care of those who have undergone the Fontan operation

    Reference intervals for the echocardiographic measurements of the right heart in children and adolescents: a systematic review

    Get PDF
    BACKGROUND: Transthoracic echocardiography is the primary imaging modality for the diagnosis of right ventricular (RV) involvement in congenital and acquired heart diseases. There is increasing recognition of the contribution of RV dysfunction in heart diseases affecting children and adolescents, but there is insufficient information on reference intervals for the echocardiographic measurements of the right heart in children and adolescents that represent all the continental populations of the world.OBJECTIVE:The aim of this systematic review was to collate, from published studies, normative data for echocardiographic evaluation of the right heart in children and adolescents, and to identify gaps in knowledge in this field especially with respect to sub-Saharan Africans. METHODS: We performed a systematic literature search to identify studies of reference intervals for right heart measurements as determined by transthoracic echocardiography in healthy children and adolescents of school-going age. Articles were retrieved from electronic databases with a combination of search terms from the earliest date available until May 2013. RESULTS: Reference data were available for a broad range of variables. Fifty one studies out of 3096 publications were included. The sample sizes of the reference populations ranged from 13 to 2036 with ages varying from 5 to 21 years. We identified areas lacking sufficient reference data. These included reference data for determining right atrial size, tricuspid valve area, RV dimensions and areas, the RV % fractional area change, pulmonary artery pressure gradients and the right-sided haemodynamics, including the inferior vena cava dimensions and collapsibility. There were no data for sub-Saharan African children and adolescents. CONCLUSION: Reliable reference data are lacking for important echocardiographic measurements of the RV in children and adolescents, especially for sub-Saharan Africans

    The fun.tast.tisch. project

    No full text

    Generation and characterization of three human induced pluripotent stem cell lines (EURACi007-A, EURACi008-A, EURACi009-A) from three different individuals of the same family with arrhythmogenic cardiomyopathy (ACM) carrying the plakophillin2 p.N346Lfs*12 mutation

    No full text
    Arrhythmogenic Cardiomyopathy (ACM) is a genetically based cardiomyopathy associated with ventricular arrhythmias and fibro-fatty substitution of cardiac tissue. It is characterized by incomplete penetrance. We generated human iPSCs by episomal reprogramming of blood cells from three members of the same family: the proband, affected by ACM and carrying the heterozygous plakophillin2 p.N346Lfs*12 mutation, one asymptomatic carrier of the same mutation and one apparently healthy control. hiPSCs were characterized according to standard protocols including karyotyping, pluripotency marker expression and differentiation towards the three germ layers. These hiPSC lines can be used to study the mechanisms of ACM incomplete penetrance in vitro

    Clinical practice guideline for the management of infantile hemangiomas

    No full text
    Copyright © 2019 by the American Academy of Pediatrics. Infantile hemangiomas (IHs) occur in as many as 5% of infants, making them the most common benign tumor of infancy. Most IHs are small, innocuous, self-resolving, and require no treatment. However, because of their size or location, a significant minority of IHs are potentially problematic. These include IHs that may cause permanent scarring and disfigurement (eg, facial IHs), hepatic or airway IHs, and IHs with the potential for functional impairment (eg, periorbital IHs), ulceration (that may cause pain or scarring), and associated underlying abnormalities (eg, intracranial and aortic arch vascular abnormalities accompanying a large facial IH). This clinical practice guideline for the management of IHs emphasizes several key concepts. It defines those IHs that are potentially higher risk and should prompt concern, and emphasizes increased vigilance, consideration of active treatment and, when appropriate, specialty consultation. It discusses the specific growth characteristics of IHs, that is, that the most rapid and significant growth occurs between 1 and 3 months of age and that growth is completed by 5 months of age in most cases. Because many IHs leave behind permanent skin changes, there is a window of opportunity to treat higher-risk IHs and optimize outcomes. Early intervention and/or referral (ideally by 1 month of age) is recommended for infants who have potentially problematic IHs. When systemic treatment is indicated, propranolol is the drug of choice at a dose of 2 to 3 mg/kg per day. Treatment typically is continued for at least 6 months and often is maintained until 12 months of age (occasionally longer). Topical timolol may be used to treat select small, thin, superficial IHs. Surgery and/or laser treatment are most useful for the treatment of residual skin changes after involution and, less commonly, may be considered earlier to treat some IHs
    corecore