976 research outputs found

    The Production of Sterility in Male Mice by Irradiation with Neutrons

    Full text link

    Role of interband scattering in neutron irradiated MgB2_2 thin films by Scanning Tunneling Spectroscopy measurements

    Full text link
    A series of MgB2_2 thin films systematically disordered by neutron irradiation have been studied by Scanning Tunneling Spectroscopy. The c-axis orientation of the films allowed a reliable determination of local density of state of the π\pi band. With increasing disorder, the conductance peak moves towards higher voltages and becomes lower and broader, indicating a monotonic increase of the π\pi gap and of the broadening parameter. These results are discussed in the frame of two-band superconductivity.Comment: The text will be submitted in Latex format, and the corresponding pdf file should take 6 pages. There are 5 figures (eps files submitted) and 1 tabl

    Neutron Irradiation of Mg11B2 : From the Enhancement to the Suppression of Superconducting Properties

    Full text link
    In this letter we present the effect of neutron irradiation up to fluences of 3.9 1019 n/cm2 on the superconducting properties of MgB2. In order to obtain a disorder structure homogeneously distributed, the experiment was carried out on bulk samples prepared with the 11B isotope. Up to fluences of 1018 n/cm2 the critical temperature is slightly diminished (36 K) and the superconducting properties are significantly improved; the upper critical field is increased from 13.5 T to 20.3 T at 12 K and the irreversibility field is doubled at 5 K. For larger neutron fluences the critical temperature is suppressed down to 12 K and the superconducting properties come out strongly degraded.Comment: 13 pages, 4 figures. Submitted to Appl.Phys.Let

    Enhanced flux pinning in neutron irradiated MgB2

    Full text link
    We study the effect of neutron irradiation on the critical current density Jc of isotopically pure polycrystalline Mg11B2 samples. For fluences in the range 1017-1018 cm-2, Jc is enhanced and its dependence on magnetic field is significantly improved: we demonstrate that, in this regime, point-like pinning centers are effectively introduced in the system proportionally to the neutron fluence. Instead, for larger fluences, a strong suppression of the critical temperature accompanied by a decrease of both the upper critical field Bc2 and Jc is found.Comment: 13 pages, 3 igure

    RNA polymerase III subunit architecture and implications for open promoter complex formation

    Get PDF
    Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the TFIIE-related subcomplex C82/34/31. Here we combine crosslinking and hydroxyl radical probing to position the C82/34/31 subcomplex around the Pol III active center cleft. The extended winged helix (WH) domains 1 and 4 of C82 localize to the polymerase domains clamp head and clamp core, respectively, and the two WH domains of C34 span the polymerase cleft from the coiled-coil region of the clamp to the protrusion. The WH domains of C82 and C34 apparently cooperate with other mobile regions flanking the cleft during promoter DNA binding, opening, and loading. Together with published data, our results complete the subunit architecture of Pol III and indicate that all TFIIE-related components of eukaryotic and archaeal transcription systems adopt an evolutionarily conserved location in the upper part of the cleft that supports their functions in open promoter complex formation and stabilization

    Excitation Spectrum and Superexchange Pathways in the Spin Dimer VODPO_4 . 1/2 D_2O

    Full text link
    Magnetic excitations have been investigated in the spin dimer material VODPO_4 \cdot 1/2 D_2O using inelastic neutron scattering. A dispersionless magnetic mode was observed at an energy of 7.81(4) meV. The wavevector dependence of the scattering intensityfrom this mode is consistent with the excitation of isolated V^{4+} spin dimers with a V-V separation of 4.43(7) \AA. This result is unexpected since the V-V pair previously thought to constitute themagnetic dimer has a separation of 3.09 \AA. We identify an alternative V-V pair as the likely magnetic dimer, which involves superexchange pathways through a covalently bonded PO_4 group. This surprising result casts doubt on the interpretation of (VO)_2P_2O_7 as a spin ladder.Comment: 4 pages, 4 postscript figures - identical to previous paper but figure 2 and 3 hopefully more compatible .p

    Systematic study of disorder induced by neutron irradiation in MgB2 thin films

    Full text link
    The effects of neutron irradiation on normal state and superconducting properties of epitaxial magnesium diboride thin films are studied up to fluences of 1020 cm-2. All the properties of the films change systematically upon irradiation. Critical temperature is suppressed and, at the highest fluence, no superconducting transition is observed down to 1.8 K. Residual resistivity progressively increases from 1 to 190 microohmcm; c axis expands and then saturates at the highest damage level. We discuss the mechanism of damage through the comparison with other damage procedures. The normal state magnetoresistivity of selected samples measured up to high fields (28 and 45T) allows to determine unambiguously the scattering rates in each band; the crossover between the clean and dirty limit in each sample can be monitored. This set of samples, with controlled amount of disorder, is suitable to study the puzzling problem of critical field in magnesium diboride thin films. The measured critical field values are extremely high (of the order of 50T in the parallel direction at low fluences) and turns out to be rather independent on the experimental resistivity, at least at low fluences. A simple model to explain this phenomenology is presented.Comment: 29 pages, 6 figures, accepted for publication on J. of Applied Physic

    Proteome Profiling of Breast Tumors by Gel Electrophoresis and Nanoscale Electrospray Ionization Mass Spectrometry

    Get PDF
    We have conducted proteome-wide analysis of fresh surgery specimens derived from breast cancer patients, using an approach that integrates size-based intact protein fractionation, nanoscale liquid separation of peptides, electrospray ion trap mass spectrometry, and bioinformatics. Through this approach, we have acquired a large amount of peptide fragmentation spectra from size-resolved fractions of the proteomes of several breast tumors, tissue peripheral to the tumor, and samples from patients undergoing noncancer surgery. Label-free quantitation was used to generate protein abundance maps for each proteome and perform comparative analyses. The mass spectrometry data revealed distinct qualitative and quantitative patterns distinguishing the tumors from healthy tissue as well as differences between metastatic and non-metastatic human breast cancers including many established and potential novel candidate protein biomarkers. Selected proteins were evaluated by Western blotting using tumors grouped according to histological grade, size, and receptor expression but differing in nodal status. Immunohistochemical analysis of a wide panel of breast tumors was conducted to assess expression in different types of breast cancers and the cellular distribution of the candidate proteins. These experiments provided further insights and an independent validation of the data obtained by mass spectrometry and revealed the potential of this approach for establishing multimodal markers for early metastasis, therapy outcomes, prognosis, and diagnosis in the future. © 2008 American Chemical Society

    DOSCATs: Double standards for protein quantification

    Get PDF
    The two most common techniques for absolute protein quantification are based on either mass spectrometry (MS) or on immunochemical techniques, such as western blotting (WB). Western blotting is most often used for protein identification or relative quantification, but can also be deployed for absolute quantification if appropriate calibration standards are used. MS based techniques offer superior data quality and reproducibility, but WB offers greater sensitivity and accessibility to most researchers. It would be advantageous to apply both techniques for orthogonal quantification, but workflows rarely overlap. We describe DOSCATs (DOuble Standard conCATamers), novel calibration standards based on QconCAT technology, to unite these platforms. DOSCATs combine a series of epitope sequences concatenated with tryptic peptides in a single artificial protein to create internal tryptic peptide standards for MS as well as an intact protein bearing multiple linear epitopes. A DOSCAT protein was designed and constructed to quantify five proteins of the NF-κB pathway. For three target proteins, protein fold change and absolute copy per cell values measured by MS and WB were in excellent agreement. This demonstrates that DOSCATs can be used as multiplexed, dual purpose standards, readily deployed in a single workflow, supporting seamless quantitative transition from MS to WB
    corecore