96 research outputs found

    Successful Versus Failed Adaptation to High-Fat Diet–Induced Insulin Resistance: The Role of IAPP-Induced β-Cell Endoplasmic Reticulum Stress

    Get PDF
    ObjectiveObesity is a known risk factor for type 2 diabetes. However, most obese individuals do not develop diabetes because they adapt to insulin resistance by increasing beta-cell mass and insulin secretion. Islet pathology in type 2 diabetes is characterized by beta-cell loss, islet amyloid derived from islet amyloid polypeptide (IAPP), and increased beta-cell apoptosis characterized by endoplasmic reticulum (ER) stress. We hypothesized that IAPP-induced ER stress distinguishes successful versus unsuccessful islet adaptation to insulin resistance.Research design and methodsTo address this, we fed wild-type (WT) and human IAPP transgenic (HIP) rats either 10 weeks of regular chow or a high-fat diet and prospectively examined the relations among beta-cell mass and turnover, beta-cell ER stress, insulin secretion, and insulin sensitivity.ResultsA high-fat diet led to comparable insulin resistance in WT and HIP rats. WT rats compensated with increased insulin secretion and beta-cell mass. In HIP rats, in contrast, neither beta-cell function nor mass compensated for the increased insulin demand, leading to diabetes. The failure to increase beta-cell mass in HIP rats was the result of ER stress-induced beta-cell apoptosis that increased in proportion to diet-induced insulin resistance.ConclusionsIAPP-induced ER stress distinguishes the successful versus unsuccessful islet adaptation to a high-fat diet in rats. These studies are consistent with the hypothesis that IAPP oligomers contribute to increased beta-cell apoptosis and beta-cell failure in humans with type 2 diabetes

    Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase Modulates Oscillations of Pancreatic Islet Metabolism

    Get PDF
    Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis

    Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New β-Cell Cluster Model

    Get PDF
    The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions
    corecore