867 research outputs found
Application of Laser Microdissection to plant pathogenic and symbiotic interactions
Abstract Laser Microdissection (LM) is a technology that allows the rapid procurement of selected cell populations from a section of heterogeneous tissues in a manner conducive to the extraction of DNA, RNA, proteins and even metabolites. In the past few years, it has also been applied to plant biology in order to study gene expression in plant-nematode and plant-microbe interactions. LM represents a powerful tool since cells associated with a particular infection stage can be visualized under the microscope and harvested. Therefore, verification of the response of the plant during the progression of the colonization can be performed in different cell types. Applications of LM to study the interaction between the plant and both pathogenic and symbiotic organisms (i.e. nematode and fungi, respectively) are explored in this review
Zinc ions alter morphology and chitin deposition in an ericoid fungus
A sterile mycelium PS IV, an ascomycete capable of establishing ericoid mycorrhizas, was used to investigate how zinc ions affect the cellular mechanisms of fungal growth. Asignificant reduction of the fungal biomass was observed in the presence of millimolar zinc concentrations; this mirrored conspicuous changes in hyphal morphology which led to apical swellings and increased branching in the subapical parts. Specific probes for fluorescence and electron microscopy localised chitin, the main cell wall polysaccharide, on the inner part of the fungal wall and on septa in control specimens. In Zn-treated mycelium, hyphal walls were thicker and a more intense chitin labelling was detected on the transverse walls. Aquantitative assay showed a significant increase in the amount of chitin in metal- treated hyphae
Residual stress estimated by nanoindentation in pontics and abutments of veneered zirconia fixed dental prostheses
Glass ceramics’ fractures in zirconia fixed dental prosthesis (FDP) remains a clinical challenge since it has higher fracture rates than the gold standard, metal ceramic FDP. Nanoindentation has been shown a reliable tool to determine residual stress of ceramic systems, which can ultimately correlate to failure-proneness. Objectives: To assess residual tensile stress using nanoindentation in veneered three-unit zirconia FDPs at different surfaces of pontics and abutments. Methodology: Three composite resin replicas of the maxillary first premolar and crown-prepared abutment first molar were made to obtain three-unit FDPs. The FDPs were veneered with glass ceramic containing fluorapatite crystals and resin cemented on the replicas, embedded in epoxy resin, sectioned, and polished. Each specimen was subjected to nanoindentation in the following regions of interest: 1) Mesial premolar abutment (MPMa); 2) Distal premolar abutment (DPMa); 3) Buccal premolar abutment (BPMa); 4) Lingual premolar abutment (LPMa); 5) Mesial premolar pontic (MPMp); 6) Distal premolar pontic (DPMp); 7) Buccal premolar pontic (BPMp); 8) Lingual premolar pontic (LPMp); 9) Mesial molar abutment (MMa); 10) Distal molar abutment (DMa); 11) Buccal molar abutment (BMa); and 12) Lingual molar abutment (LMa). Data were assessed using Linear Mixed Model and Least Significant Difference (95%) tests. Results: Pontics had significantly higher hardness values than premolar (p=0.001) and molar (p=0.007) abutments, suggesting lower residual stress levels. Marginal ridges yielded higher hardness values for connectors (DPMa, MMa, MPMp and DPMp) than for outer proximal surfaces of abutments (MPMa and DMa). The mesial marginal ridge of the premolar abutment (MPMa) had the lowest hardness values, suggesting higher residual stress concentration. Conclusions: Residual stress in three-unit FDPs was lower in pontics than in abutments. The outer proximal surfaces of the abutments had the highest residual stress concentration
Resource Control for Synchronous Cooperative Threads
We develop new methods to statically bound the resources needed for the
execution of systems of concurrent, interactive threads. Our study is concerned
with a \emph{synchronous} model of interaction based on cooperative threads
whose execution proceeds in synchronous rounds called instants. Our
contribution is a system of compositional static analyses to guarantee that
each instant terminates and to bound the size of the values computed by the
system as a function of the size of its parameters at the beginning of the
instant. Our method generalises an approach designed for first-order functional
languages that relies on a combination of standard termination techniques for
term rewriting systems and an analysis of the size of the computed values based
on the notion of quasi-interpretation. We show that these two methods can be
combined to obtain an explicit polynomial bound on the resources needed for the
execution of the system during an instant. As a second contribution, we
introduce a virtual machine and a related bytecode thus producing a precise
description of the resources needed for the execution of a system. In this
context, we present a suitable control flow analysis that allows to formulte
the static analyses for resource control at byte code level
Gigaspora margarita and its endobacterium modulate symbiotic marker genes in tomato roots under combined water and nutrient stress
As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF) may be effective in
enhancing plant resilience to drought, one of the major limiting factors threatening crop productivity.
AMF host their own microbiota and previous data demonstrated that endobacteria thriving in
Gigaspora margarita modulate fungal antioxidant responses. Here, we used the G. margarita–Candidatus
Glomeribacter gigasporarum system to test whether the tripartite interaction between tomato,
G. margarita and its endobacteria may improve plant resilience to combined water/nutrient stress.
Tomato plants were inoculated with spores containing endobacteria (B+) or not (B−), and exposed
to combined water/nutrient stress. Plants traits, AM colonization and expression of AM marker
genes were measured. Results showed that mycorrhizal frequency was low and no growth effect was
observed. Under control conditions, B+ inoculated plants were more responsive to the symbiosis,
as they showed an up-regulation of three AM marker genes involved in phosphate and lipids
metabolism compared with B− inoculated or not-inoculated plants. When combined stress was
imposed, the difference between fungal strains was still evident for one marker gene. These results
indicate that the fungal endobacteria finely modulate plant metabolism, even in the absence of
growth response
- …