418 research outputs found

    Mobilities and Scattering Times in Decoupled Graphene Monolayers

    Get PDF
    Folded single layer graphene forms a system of two decoupled monolayers being only a few Angstroms apart. Using magnetotransport measurements we investigate the electronic properties of the two layers conducting in parallel. We show a method to obtain the mobilities for the individual layers despite them being jointly contacted. The mobilities in the upper layer are significantly larger than in the bottom one indicating weaker substrate influence. This is confirmed by larger transport and quantum scattering times in the top layer. Analyzing the temperature dependence of the Shubnikov-de Haas oscillations effective masses and corresponding Fermi velocities are obtained yielding reduced values down to 66 percent in comparison to monolayers.Comment: 4 pages, 5 figure

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them

    Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots

    Get PDF
    We have investigated the noise properties of the tunneling current through vertically coupled self-assembled InAs quantum dots. We observe super-Poissonian shot noise at low temperatures. For increased temperature this effect is suppressed. The super-Poissonian noise is explained by capacitive coupling between different stacks of quantum dots

    Low-temperature hysteresis in the field effect of bilayer graphene

    Get PDF
    Hysteresis in the field effect of bilayer graphene is observed at a low temperature. We attribute this effect to charge traps in the substrate. When the sweep rate of the back-gate voltage is increased to higher values, the hysteresis becomes more pronounced. By measuring the hysteresis in the field effect, the lifetime of the charge traps is estimated as 16.9 min. It is shown that the influence of charge traps on graphene is strongly affected by a magnetic field. Above 5 T the hysteresis remains constant. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.DFG/EXC/QUES

    Phenotype-specific association of the TGFBR3 locus with nonsyndromic cryptorchidism

    Get PDF
    PURPOSE: Based on a genome-wide association study of testicular dysgenesis syndrome showing a possible association with TGFBR3, we analyzed data from a larger, phenotypically restricted cryptorchidism population for potential replication of this signal. MATERIALS AND METHODS: We excluded samples based on strict quality control criteria, leaving 844 cases and 2,718 controls of European ancestry that were analyzed in 2 separate groups based on genotyping platform (ie Illumina® HumanHap550, version 1 or 3, or Human610-Quad, version 1 BeadChip in group 1 and Human OmniExpress 12, version 1 BeadChip platform in group 2). Analyses included genotype imputation at the TGFBR3 locus, association analysis of imputed data with correction for population substructure, subsequent meta-analysis of data for groups 1 and 2, and selective genotyping of independent cases (330) and controls (324) for replication. We also measured Tgfbr3 mRNA levels and performed TGFBR3/betaglycan immunostaining in rat fetal gubernaculum. RESULTS: We identified suggestive (p ≤ 1× 10(-4)) association of markers in/near TGFBR3, including rs9661103 (OR 1.40; 95% CI 1.20, 1.64; p = 2.71 × 10(-5)) and rs10782968 (OR 1.58; 95% CI 1.26, 1.98; p = 9.36 × 10(-5)) in groups 1 and 2, respectively. In subgroup analyses we observed strongest association of rs17576372 (OR 1.42; 95% CI 1.24, 1.60; p = 1.67 × 10(-4)) with proximal and rs11165059 (OR 1.32; 95% CI 1.15, 1.38; p = 9.42 × 10(-4)) with distal testis position, signals in strong linkage disequilibrium with rs9661103 and rs10782968, respectively. Association of the prior genome-wide association study signal (rs12082710) was marginal (OR 1.13; 95% CI 0.99, 1.28; p = 0.09 for group 1), and we were unable to replicate signals in our independent cohort. Tgfbr3/betaglycan was differentially expressed in wild-type and cryptorchid rat fetal gubernaculum. CONCLUSIONS: These data suggest complex or phenotype specific association of cryptorchidism with TGFBR3 and the gubernaculum as a potential target of TGFβ signaling

    Three-dimensional greyscale transrectal ultrasound-guidance and biopsy core preembedding for detection of prostate cancer:Dutch clinical cohort study

    Get PDF
    Background: To overcome the limitations regarding two dimensional (2D) greyscale (GS) transrectal ultrasound (TRUS)-guided biopsy in prostate cancer (PCa) detection and tissue packaging in biopsy processing, there is an ongoing focus on new imaging and pathology techniques. A three-dimensional (3D) model of the prostate with biopsy needle guidance can be generate by the Navigo™ workstation (UC-care, Israel). The SmartBX™ system (UC-care, Israel) provides a prostate biopsy core preembedding method. The aim of this study was to compare cancer detection rates between the 3D TRUS-guidance and preembedding method with conventional 2D GS TRUS-guidance among patients undergoing prostate biopsies. Methods: We retrospectively analyzed the records of all patients who underwent prostate biopsies for PCa detection at our institution from 2007 to 2016. The cohort was divided into a 2D GS TRUS-guidance cohort (from 2007 to 2013, n = 1149) and a 3D GS TRUS-guidance with preembedding cohort (from 2013 to 2016, n = 469). Effect of 3D GS TRUS-guidance with preembedding on detection rate of PCa and clinically significant PCa (Gleason score ≥ 7 or &gt; 2 biopsy cores with a Gleason score 6) was compared to 2D GS TRUS-guidance using regression models. Results: Detection rate of PCa and clinically significant PCa was 39.0 and 24.9% in the 3D GS TRUS cohort compared to 33.5 and 19.0% in the 2D GS TRUS cohort, respectively. On multivariate regression analysis the use of 3D GS TRUS-guidance with preembedding was associated with a significant increase in detection rate of PCa (aOR = 1.33; 95% CI: 1.03-1.72) and clinically significant PCa (aOR = 1.47; 95% CI: 1.09-1.98). Conclusion: Our results suggest that 3D GS TRUS-guidance with biopsy core preembedding improves PCa and clinically significant PCa detection compared to 2D GS TRUS-guidance. Additional studies are needed to justify the application of these systems in clinical practice.</p

    Measurement of finite-frequency current statistics in a single-electron transistor

    Get PDF
    Electron transport in nano-scale structures is strongly influenced by the Coulomb interaction which gives rise to correlations in the stream of charges and leaves clear fingerprints in the fluctuations of the electrical current. A complete understanding of the underlying physical processes requires measurements of the electrical fluctuations on all time and frequency scales, but experiments have so far been restricted to fixed frequency ranges as broadband detection of current fluctuations is an inherently difficult experimental procedure. Here we demonstrate that the electrical fluctuations in a single electron transistor (SET) can be accurately measured on all relevant frequencies using a nearby quantum point contact for on-chip real-time detection of the current pulses in the SET. We have directly measured the frequency-dependent current statistics and hereby fully characterized the fundamental tunneling processes in the SET. Our experiment paves the way for future investigations of interaction and coherence induced correlation effects in quantum transport.Comment: 7 pages, 3 figures, published in Nature Communications (open access
    corecore