3,089 research outputs found

    Enriching Existing Test Collections with OXPath

    Full text link
    Extending TREC-style test collections by incorporating external resources is a time consuming and challenging task. Making use of freely available web data requires technical skills to work with APIs or to create a web scraping program specifically tailored to the task at hand. We present a light-weight alternative that employs the web data extraction language OXPath to harvest data to be added to an existing test collection from web resources. We demonstrate this by creating an extended version of GIRT4 called GIRT4-XT with additional metadata fields harvested via OXPath from the social sciences portal Sowiport. This allows the re-use of this collection for other evaluation purposes like bibliometrics-enhanced retrieval. The demonstrated method can be applied to a variety of similar scenarios and is not limited to extending existing collections but can also be used to create completely new ones with little effort.Comment: Experimental IR Meets Multilinguality, Multimodality, and Interaction - 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 201

    Numerical discretization of rotated diffusion operators in ocean models

    Full text link
    A method to improve the behavior of the numerical discretization of a rotated diffusion operator such as, for example, the isopycnal diffusion parameterization used in large-scale ocean models based on the so-called z-coordinate system is presented. The authors then focus exclusively on the dynamically passive tracers and analyze some different approaches to the numerical discretization. Monotonic schemes are designed but are found to be rather complex, while simpler, linear schemes are shown to produce unphysical undershooting and overshooting. It is suggested that the choice of an appropriate discretization method depends on the importance of the rotated diffusion in a given simulation, whether the field to be diffused is dynamically active or not

    Graphitization in chromium cast iron

    Full text link
    peer reviewedSome trials with graphite Hi-Cr iron rolls have been done mainly in Japan, for the rolling of stainless steel. This material could lead to good compromise between oxidation, wear and thermal behaviour. By using thermal analysis and resistometry, the conditions for secondary graphite formation have been studied. The amount and volume of free graphite may be strongly increased by a suitable heat treatment, allowing a good thermal conductivity as well as high wear and mechanical properties

    Exploring Variation Between Artificial Grammar Learning Experiments: Outlining a Meta-Analysis Approach

    Get PDF
    Artificial grammar learning (AGL) has become an important tool used to understand aspects of human language learning and whether the abilities underlying learning may be unique to humans or found in other species. Successful learning is typically assumed when human or animal participants are able to distinguish stimuli generated by the grammar from those that are not at a level better than chance. However, the question remains as to what subjects actually learn in these experiments. Previous studies of AGL have frequently introduced multiple potential contributors to performance in the training and testing stimuli, but meta‐analysis techniques now enable us to consider these multiple information sources for their contribution to learning—enabling intended and unintended structures to be assessed simultaneously. We present a blueprint for meta‐analysis approaches to appraise the effect of learning in human and other animal studies for a series of artificial grammar learning experiments, focusing on studies that examine auditory and visual modalities. We identify a series of variables that differ across these studies, focusing on both structural and surface properties of the grammar, and characteristics of training and test regimes, and provide a first step in assessing the relative contribution of these design features of artificial grammars as well as species‐specific effects for learning

    Solar Physics - Plasma Physics Workshop

    Get PDF
    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments

    Invariant vector fields and the prolongation method for supersymmetric quantum systems

    Full text link
    The kinematical and dynamical symmetries of equations describing the time evolution of quantum systems like the supersymmetric harmonic oscillator in one space dimension and the interaction of a non-relativistic spin one-half particle in a constant magnetic field are reviewed from the point of view of the vector field prolongation method. Generators of supersymmetries are then introduced so that we get Lie superalgebras of symmetries and supersymmetries. This approach does not require the introduction of Grassmann valued differential equations but a specific matrix realization and the concept of dynamical symmetry. The Jaynes-Cummings model and supersymmetric generalizations are then studied. We show how it is closely related to the preceding models. Lie algebras of symmetries and supersymmetries are also obtained.Comment: 37 pages, 7 table

    Role of lateral and feedback connections in primary visual cortex in the processing of spatiotemporal regularity: a TMS study

    Get PDF
    Our human visual system exploits spatiotemporal regularity to interpret incoming visual signals. With a dynamic stimulus sequence of four collinear bars (predictors) appearing consecutively toward the fovea, followed by a target bar with varying contrasts, we have previously found that this predictable spatiotemporal stimulus structure enhances target detection performance and its underlying neural process starts in the primary visual cortex (area V1). However, the relative contribution of V1 lateral and feedback connections in the processing of spatiotemporal regularity remains unclear. In this study we measured human contrast detection of a briefly presented foveal target that was embedded in a dynamic collinear predictor-target sequence. Transcranial magnetic stimulation (TMS) was used to selectively disrupt V1 horizontal and feedback connections in the processing of predictors. The coil was positioned over a cortical location corresponding to the location of the last predictor prior to target onset. Single-pulse TMS at an intensity of 10% below phosphene threshold was delivered at 20 or 90ms after the predictor onset. Our analysis revealed that the delivery of TMS at both time windows equally reduced, but did not abolish, the facilitation effect of the predictors on target detection. Furthermore, if the predictors’ ordination was randomized to suppress V1 lateral connections, the TMS disruption was significantly more evident at 20ms than at 90ms time window. We suggest that both lateral and feedback connections contribute to the encoding of spatiotemporal regularity in V1. These findings develop understanding of how our visual system exploits spatiotemporal regularity to facilitate the efficiency of visual perception
    corecore